

COMPUTER BASED TEST (CBT) Memory Based Questions & Solutions

Date: 24 June, 2022 (SHIFT-2) | TIME: (3.00 p.m. to 6.00 p.m) Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

| JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

PART: PHYSICS

We have two spring block systems as shown in figure.

During oscillation maximum speed of both block is same. Find the ratio of Amplitude of oscillation of

$$(1) \frac{1}{2}$$

$$(2) \frac{3}{2}$$

$$(3) \frac{1}{2}$$

$$(4) \frac{7}{2}$$

Ans.

$$V_{man} = \omega_1 A_1 = \omega_2 A_2$$

$$\frac{A_1}{A_1} = \frac{\omega_2}{A_1} = \frac{\sqrt{K_2/m_2}}{\sqrt{M_2/m_2}}$$

$$\frac{A_1}{A_2} = \frac{\omega_2}{\omega_1} = \frac{\sqrt{K_2/m_2}}{\sqrt{K_1/m_1}}$$

$$=\frac{\sqrt{K_2}}{\sqrt{K_1}}\times\frac{\sqrt{m_2}}{\sqrt{m_1}}$$

$$= \frac{\sqrt{9k}}{\sqrt{2K}} \times \frac{\sqrt{50}}{\sqrt{100}} = \frac{3}{2}$$

A particle of mass 5 kg is thrown upwards from ground. It experiences a constant air resistance 10 N opposite to the direction of velocity of particle. The ratio of time of ascent to the time of descent is.

(1)
$$\sqrt{\frac{3}{2}}$$

(2)
$$\sqrt{\frac{2}{3}}$$

(3)
$$\sqrt{\frac{1}{2}}$$

Ans.

Let a be the retardation produced by air resistive force $a = \frac{F_{air}}{M} = \frac{10}{5} = 2$, t_a and t_d be the time of ascent Sol.

and time of descent respectively. If the particle rises upto a height h

then
$$h = \frac{1}{2} (g + a) t_a^2$$

and
$$h = \frac{1}{2} (g - a) t_d^2$$

$$\frac{t_a}{t_d} = \sqrt{\frac{g-a}{g+a}} = \sqrt{\frac{10-2}{10+2}} = \sqrt{\frac{2}{3}}$$

Ans.
$$\sqrt{\frac{2}{3}}$$

Resonance Eduventures Ltd.

- Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
- To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔞 7340010333 📝 tecebook.com/ResonanceEdu 💆 witten.com/ResonanceEdu 🖺 www.youtube.com/resonance ac.in

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#1

Resonance®

| JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Determine current in

For the circuit above current through Zener diode.

- (1) 1.125 mA
- (2) 2.25 mA
- (3) 4 mA
- (4) 4.5 mA

Ans. (1)

Sol.

$$-10 + 800I + 5 = 0$$

$$I = \frac{5}{800} \text{ Amp}$$

$$I_1 = \frac{5}{1000} \text{ Amp}$$

$$I_2 = I - I_1$$

$$=\frac{5}{800}-\frac{5}{1000}=1.125 \text{ mA}$$

Ans. (2)

Sol. Given

$$\frac{I_1}{I_2} = \frac{9}{4}$$

$$\frac{I_{\text{max.}}}{I_{\text{min.}}} = \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{\left(\frac{\sqrt{I_1}}{\sqrt{I_2}} + 1\right)^2}{\left(\frac{\sqrt{I_1}}{\sqrt{I_2}} - 1\right)^2} = 25 : 1$$

- Proton, deuteron and α -particle are projected with same kinetic energy in uniform magnetic field in the direction perpendicular to the magnetic field. Then ratio radii in magnetic field is :
- (1) 1: $\sqrt{2}$: $\sqrt{2}$ (2) 1: $\sqrt{2}$: 2 (3) 1: $\sqrt{2}$: 1 (4) $\sqrt{2}$: $\sqrt{2}$: $2\sqrt{2}$

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 toebeek.com/Resonancedul www.resonancedul www.resonancedul www.resonancedul vertical resonancedul resonancedul www.resonancedul vertical resonancedul vertical reson

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#2

Resonance | JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

For circular path in magnetic field.

$$r = \frac{\sqrt{2mE}}{qB}$$
 E = kinetic energy

n iei ii.	d	р	α
m	2	1	4
q	е	+e	2e

$$r_1: r_2: r_3 = \frac{\sqrt{m_1}}{q_1}: \frac{\sqrt{m_2}}{q_2}: \frac{\sqrt{m_3}}{q_3} = \frac{\sqrt{1}}{e}: \frac{\sqrt{2}}{e}: \frac{\sqrt{4}}{2e} = 1: \sqrt{2}: 1$$

- During circular motion with constant angular acceleration, in 1st second, starting from rest covers 5 rotation. Then find number of rotation in next second.
 - (1)5
- (2) 12
- (4) 15

Ans.

Sol.
$$\theta = \omega t + \frac{1}{2} \alpha t^2$$

$$\theta_1 = \frac{1}{2}\alpha(1)^2$$

$$\theta_1 + \theta_2 = \frac{1}{2}\alpha(2)^2$$

$$\theta_2 = \frac{1}{2}\alpha(2)^2$$
 ...(

so
$$\theta_2 = 3\theta_1 = 3 \times 5 = 15$$

- 7. Hammer of mass 1.5 kg strikes to nail of mass 5 kg with velocity 20 m/s. $\frac{1}{4}$ th energy of hammer is transfer to nail, then find rise in temperature of nail, (s = 0.42) (1) 35 K
- (2) 102 K
- (4) 180 K

Ans. (1)

 $\frac{1}{4}$ kinetic energy of hammer is converted into heat. Which is transfer to the nail.

$$\frac{1}{4} \left(\frac{1}{2} M_{\text{hammer}} \times v^2 \right) = M_{\text{nail}} s\Delta\theta$$

$$\Delta\theta = \frac{1}{8} \frac{M_{hammer}}{M_{hail}} \frac{v^2}{s} = \frac{1 \times 1.5 \times (20)^2}{8 \times 5 \times 0.42} = 34.56 \text{ K}$$

8. Which of the following option have physical quantity of same dimension. (4) Torque, Force

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Tacebeek.com/Resonancetdu

www.resonancetdu

**

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

Resonance* | JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- Earth is revolving around sun in orbit of radius r with time period T1. If radius becomes 3r and time periods becomes T_2 , find $\frac{T_2}{T_1}$

Ans.

Sol.
$$\frac{T_2}{T_1} = \left(\frac{r_2}{r_1}\right)^{3/2} = \left(\frac{3r}{r}\right)^{3/2}$$

$$\frac{T_2}{T_4} = 3\sqrt{3}$$

10. A particle attached to a light rod moving with constant speed in vertical circular motion. Select the correct option:

- (1) Tension is minimum at highest position
- (2) Tension is maximum at highest position
- (3) Tension is maximum when string is Horizontal (4) Tension is minimum when string is horizontal.
- Ans.
- A particle of mass 5 kg is projected is angle of 45° with horizontal at t = 0. Its velocity at t = 2 second is 11. 20 m/s, than maximum height of particle from the earth surface.
- (2) 40 m

Ans.

Assume initial speed is u Sol.

then
$$\vec{u} = \frac{u}{\sqrt{2}} \hat{i} + \frac{u}{\sqrt{2}}$$

$$\vec{v} = \frac{u}{\sqrt{2}} \hat{i} + \left(\frac{u}{\sqrt{2}} - g \times 2 \right) \hat{j}$$

given
$$\Rightarrow$$
 v = 20 = $\sqrt{\left(\frac{u}{\sqrt{2}}\right)^2 + \left(\frac{u}{\sqrt{2}} - 2g\right)^2}$

$$400 = \frac{u^2}{2} + \frac{u^2}{2} + 400 - \frac{40u}{\sqrt{2}} \; ; \; u^2 - \frac{40}{\sqrt{2}}u = 0 \; ; \; u \left(u - \frac{40}{\sqrt{2}}\right) = 0 \quad \Rightarrow u = 0 \; \text{ or } \quad u = \frac{40}{\sqrt{2}}m/2$$

Maximum height =
$$\frac{u^2(\sin^2\theta)}{2g} = \frac{\left(\frac{40}{\sqrt{2}}\frac{1}{\sqrt{2}}\right)^2}{2g} = \frac{(20)^2}{20} = 20 \text{ m}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🚳 7340010333 🌃 tecebook com/ResonanceEdu 💆 witter.com/ResonanceEdu 🛅 www.youtube.com/resonance ac.in

Resonance | JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

12. In potentiometer circuit A cell of Emf E was balanced for balance length of 250 cm. Resistance of potentiometer wire = 20Ω . Length of potentiometer wire = 10 m. Determine Emf E.

(1)8(2)

(2)6

(3)4

(4) 2

Ans.

 $I = \frac{20}{R + R_n} = \frac{20}{20 + 30} = \frac{20}{50} = \frac{2}{5} \text{ Amp}$ Sol.

Y = potential gradient = $\frac{iR}{L} = \frac{2}{5} \times \frac{20}{10} = \frac{4}{5} \text{ V/m}$

Balance length = 250 cm = 2.5 metre

E = y × Balance length = $\frac{4}{5}$ × 2.5 = 2 volt

Ans. 2 volt

Hot water at temperature 80°C start cooling in surrounding whose temperature remain constant. ΔT = temperature difference between water and surrounding

t = time in minutes

Graph showing variation of ΔT with time (t) in given. Determine t₂ in minutes

- (1) 16 min
- (2) 32 min
- (3) 45 min
- (4) 60 min

Ans. (1)

Sol.

 $\Delta T = T_{water} - T_{sourounding} = T - T_{s}$

At t = 0 $\Delta T = 60$ and $T = 80^{\circ}C$

80 − T_s = 60 ∴ T_s = 20°C

Newton law of cooling

$$-\frac{(T_f - T_i)}{\Delta t} = k \left(\frac{T_i + T_{fi}}{2} - T_s \right)$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
accepted com/ResonanceEdul www.nosuble.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#5

Resonance | | Jee Main-2022 | Date : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

$$\frac{20}{6 \, \text{min}} = k \left[\left(\frac{60 + 40}{2} + 20 \right) - 20 \right]$$

between 6 to t2 minute

$$\frac{20}{t_2 - 6} = k \left[\left(\frac{40 + 20}{2} + 20 \right) - 20 \right]$$

after dividing by $t_2 = 16$ min.

14. Two identical small block of same charge $q=2\times 10^{-7}\, C$ are placed on rough surface at distance ℓ from each other. Mass of each block is 10 gm and coefficient of friction for each block is μ = 0.25. If both

charges are in equilibrium then find ℓ . (1) 10 cm

(2) 12 cm

(3) 4 cm

(4) 6 cm

Ans. (2) Sol.

$$\frac{kq^2}{\ell^2} = \mu mg$$

$$\ell = \sqrt{\frac{kq^2}{\mu mg}} = \sqrt{\frac{9 \times 10^9 \times 4 \times 10^{-14}}{0.25 \times 10 \times 10^{-3} \times 10}}$$
$$= \sqrt{\frac{36 \times 10^{-5+3}}{25}} = \frac{6}{5} \times 10^{-1} \text{ m} = \frac{60}{5} \text{ cm} = 12 \text{ cm}$$

- 15. Material used for making electromagnet have different properties of the following, which property best matches for type of magnet required.
 - (1) High permeability & high retentively
- (2) low retentively and low coercively
- (3) low retentively and high coercively
- (4) High permeability & high coercively

Ans.

- Statement-1: Reactance may be zero if L and C are connected in AC circuit. Statement-2: Average power can never be zero.
 - (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 - (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (3) Statement-1 is True, Statement-2 is False
 - (4) Statement-1 is False, Statement-2 is True.

Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 areceve com/Resonancedu www.no.cube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

Resonance | JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

In heat engine source temperature is $T_1 = 727 \,^{\circ}\text{C}$ & sink temperature is $T_2 = 127 \,^{\circ}\text{C}$. If it take 3000 Kcal heat from source in each cycle find work done (in Joule) by it in each cycle.

(1) 900 J (2) 1800 J (4)

 $(3) 1800 \times 4.2 J$

 $(4) 1800 \times 10^3 \times 4.2 J$

And. Sol.

Given

 $T_1 = 727 + 273 = 1000 \text{ K}$

 $T_2 = 227 + 273 = 400 \text{ K}$ $Q_1 = 3000 \text{ K.cal}$

Efficiency

= 3000 1-

-q is moving along circular path around solid long cylinder under the interference of electric force. Determine kinetic energy of particle

(2)
$$\frac{q\rho R^2}{8\epsilon_0}$$

(3)
$$\frac{q\rho R^2}{4\epsilon_0}$$

(4)
$$\frac{q\rho R^2}{4\epsilon_0 r}$$

Ans. (3)

Charge (λ) per unit length of cylinder = $\frac{Q}{a}$ Sol.

$$= \frac{\rho \times \pi R^2 \ell}{\ell} = \rho \pi R^2$$

$$\mathsf{E} = \frac{\lambda}{2\pi\epsilon_0 \mathsf{r}} = \frac{\rho \pi \mathsf{R}^2}{2\pi\epsilon_0 \mathsf{r}} = \frac{\rho \mathsf{R}^2}{2\epsilon_0 \mathsf{r}}$$

$$qE = \frac{mV^2}{r}$$

$$\frac{q \times \rho R^2}{2\epsilon_0 r} = \frac{m V^2}{r}$$

$$mV^2 = \frac{q\rho R^2}{2\epsilon_0}$$

$$KE = \frac{1}{2}mV^2 = \frac{q\rho R^2}{4\epsilon_0}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
toctock.com/Resonancedul www.resonancedul www

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#7

Resonance | JEE MAIN-2022 | DATE : 24-06-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- Lamp emit electromagnetic wave uniformly in all direction lamp is 3.5% efficient in converting electrical power to electromagnetic wave and consume 100 W of power.
 - Determine the amplitude of magnetic field associated with wave at a distance of 4 metre from lamp. $(2) 3.5 \times 10^{-8} \text{ T}$ $(3) 1.2 \times 10^{-8} T$ $(4) 6.4 \times 10^{-8} T$

Ans.

- Power of light = Power = $100 \times \frac{3.5}{100}$ Sol.
 - I = Intensity = $\frac{\text{Power}}{4\pi r^2} = \frac{3.5 \times 100}{100 \times 4\pi (4)^2} \text{ w/m}^2 = 0.0173 \text{ w/m}^2$

$$I = \frac{B_0^2 C}{2\mu_0} \; \; ; \; \; B_0 = \sqrt{\frac{1 \times 2\mu_0}{C}} \; \; ; \; \; B_0 = 1.2 \times 10^{-8} \; T$$

- In a process diatomic gas is used, work done by gas is Q and change in internal energy is Q/4, find molar 20. heat capacity of the gas in terms of R is:
 - $(1) \frac{25}{3} R$
- (3) $\frac{25}{8}$ R
- (4) $\frac{25}{4}$ R

Ans.

- given W = Q Sol.
 - $\Delta U = \frac{Q}{c}$

$$\Delta Q = W + \Delta U = Q + \frac{Q}{4} = \frac{5}{4}Q$$

$$\begin{aligned} &\text{We know } \Delta U = \frac{f}{2} nR(\Delta T) &(1) \\ &\text{\& } \Delta Q = nC\Delta T &(2) \\ &\text{equation } (2) \text{ & } (1) \\ &\frac{C}{f}R = \frac{\Delta Q}{\Delta U} \text{ ; } \frac{C}{\frac{f}{2}R} = \frac{5Q}{4\frac{Q}{4}} & \therefore \text{ } C = \frac{5fR}{2} = \frac{25R}{2} \end{aligned}$$

$$\therefore C = \frac{5fR}{2} = \frac{25R}{2}$$

A capacitor have some charge say 'Q' coulomb. If 2 coulomb charge more is given to that capacitor then energy of capacitor is increased by 44%. Determine initial charge 'Q' in coulomb. (2) 4C (4) 10C (1) 2C(3) 6C

Ans. (4)

Sol.
$$U = \frac{Q^2}{2C}$$

New charge \Rightarrow Q + 2

U' = new energy =
$$\frac{(Q+2)^2}{2C}$$

$$U' = U + U \times \frac{44}{100} = U \times 1.44$$

 $\frac{(Q+2)^2}{2C} = \frac{Q^2}{2C} \times 1.44$ $Q+2 = Q \times \sqrt{1.44}$ $Q+2 = Q \times 1.2$ 2 = 0.2 Q Q = 10 coulomb

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE #

© Resonance Eduventures Limited | Toll-Free 1800-258-5555 | (0)744 2777777, 2777700 | contact@resonance.ac.in | CIN - U80302RJ2007PLC024029