

Main)

PAPER-1 (B.E./B. TECH.)

2022

COMPUTER BASED TEST (CBT) Memory Based Questions & Solutions

Date: 25 July, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 1 incetook com/R

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

| JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

PART: CHEMISTRY

Ans. (2)

Sol.

Species	N ₂	N_2^-	N ₂ ⊕	N ₂ -	02	02	0-2	02-
Bondorder	3	2.5	2.5	2	2	2.5	1.5	- 1
No.of unpaired electrons	0	1	1	2	2	1	1	0

 N_2 : $(\sigma^1 s)^2 (\sigma^* 1 s)^2 (\sigma^2 s)^2 (\sigma^* 2 s)^2 (\pi^2 p_x^2 = \pi^2 p_y^2) (\sigma^2 p_z)^2$

 $N_2^-: (\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p^2_x = \pi 2p^2_y) (\sigma 2p_z)^2, (\pi^* 2px)^1$

 N_2^+ : $(\sigma^1 s)^2 (\sigma^* 1 s)^2 (\sigma^2 s)^2 (\sigma^* 2 s)^2 (\pi^2 p^2_x = \pi^2 p^2_y) (\sigma^2 p_z)^1$

 $N_2^{2-}: (\sigma^1 s)^2 (\sigma^* 1 s)^2 (\sigma^2 s)^2 (\sigma^* 2 s)^2 (\sigma^2 p_z)^2 (\pi^2 p_z^2 = \pi^2 p_y^2) (\pi^* 2 p_x^1 = \pi^* 2 p_y^1)$

O₂: $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^1)$

 O_2^+ : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p^2_x = \pi 2p^2_y) (\pi^* 2p_x^1 = \pi^* 2p^0_y)$

 $O_2^-: (\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p^2_x = \pi 2p^2_y) (\pi^* 2p_x^2 = \pi^* 2p^1_y)$

 O_2^{2-} : $(\sigma 1s)^2$ $(\sigma^* 1s)^2$ $(\sigma 2s)^2$ $(\sigma^* 2s)^2$ $(\sigma 2p_z)^2$ $(\pi 2p^2_x = \pi 2p^2_y)$ $(\pi^* 2p_x^2 = \pi^* 2p^2_y)$

2 H₂O₂ on reaction with KMNO₄ in acidic medium gives

(1) Mn2+

(2) Mn3+

(3) Mn4+

(4) Mn+6

Ans. (1)

Sol.

$$2 MnO_{4}^{-} + 6 H^{+} + 5 H_{2}O_{2} \rightarrow 2 Mn^{2+} + 8 H_{2}O + 5O_{2}$$

3 For cell reaction Zn (s) | Zn²⁺ (aq) || Sn^{x+} (aq) | Sn (s)

Ecell = 0.801 V, Then how many electrons are involved in this cell reaction if reaction quotient is 10⁻².

Given $E_{Zn|Zn^{2+}}^0 = 0.763V$, $E_{Sn^{x+}|Sn}^0 = 0.008V$

Ans. (4)

Sol.

Anode : $[Zn (s) \rightarrow Zn^{2+} (aq) + 2e^{-}] X$

Cathode: $[Sn^{x+} + xe^{-} \rightarrow Sn (s)]2$

$$x Zn (s) +2Sn^{x+} \xrightarrow{2x} x Zn^{2+} (aq) + Sn (s)$$

 $E_{\text{Cell}}^{\text{O}} = 0.008 - (-0.763)$

= 0.771 V

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE #1

Resonance* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

Ecell =
$$E_{Cell}^{O} - \frac{0.059}{2x} log \left(\frac{[Zn^{2+}]^x}{[Sn^{x+}]^2} \right)$$

$$0.801 = 0.771 - \frac{0.059}{2x} \log 10^{-2}$$

$$0.03 = +\frac{0.059}{x}$$

x = 2

Total number of electrons involved = 2x = 4

4 Identity correct density order of alkali metals

MILL NO - K - Dh - Co

(2) LI - Na - N - NU - 05

(3) Li > Na > K > Rb > Cs

(4) Li > K > Na > Rb > Cs

Ans. (1)

Sol.

Property	Lithium	Sodium	Potassium	Rubidium	Caesium
	Li	Na	K	Rb	Cs
Density / g cm ⁻³	0.53	0.97	0.86	1.53	1.90

Correct density order is: Li < K < Na < Rb < Cs

5 In the following reaction sequence

BF₃ + NaH → A + NaF

 $A + N (Me)_3 \rightarrow B$

The structure of product B, with respect to Born is

(1) Trigonal planer

(2) Tetrahedral

(3) Square planar

(4) Pyramidal

Ans. (2)

Sol. $^{2BF_3+6NaH} \xrightarrow{^{450K}} B_2H_6+6NaF$

 $B_2H_6 + 2 \text{ NMe}_3 \rightarrow 2BH_3 \cdot NMe_3$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Toll Free: 1800 258 5555
7340010333
Toll Free: 1800 258 5555
7340010333
Toll Free: 1800 258 5555
Toll Free: 1800 258 555
Toll Free: 1800 258 555
Toll Free: 1800 258 555
Toll Free: 180

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#2

Resonance* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

6 Which set of quantum numbers are not possible?

(1)
$$n = 3$$
, $\ell = 1$, $m = 0$, $s = +\frac{1}{2}$

(2) n = 3,
$$\ell$$
 = 2, m = 2, s = $-\frac{1}{2}$

(3)
$$n = 3$$
, $\ell = 3$, $m = 1$, $s = +\frac{1}{2}$

(4)
$$n = 3$$
, $\ell = 0$, $m = 0$, $s = -\frac{1}{2}$

Ans. (3)

Sol. The value of n & / can not be equal.

Then the order of reaction is:

For any value of n, possible values of ℓ are 0 to n -1

For a reaction at 500 torr half life is 240 sec while at 250 torr half life is 4 min.

Ans. (1

Sol.
$$\frac{(T_{1/2})}{(T_{1/2})_1} = \left(\frac{P_1}{P_2}\right)^{1-n}$$

$$\Rightarrow \left(\frac{240}{4 \times 60}\right) = \left(\frac{500}{250}\right)^{1-n}$$

$$\Rightarrow 1 = (2)^{1-n}$$

$$\Rightarrow$$
 (2)° = (2)1-n

n =1

Which set of oxide does not used in slag formation during extraction of Copper.

(a) FeO (b) Al₂O₃ (c) ZnO (d) NiO

(e) CaO

(1) a, b (2) b, c, d (3) a, e (4) a, c

Ans. (2)

Sol. During extraction of Cu following slag formation reaction takes place.

FeO + $SiO_2 \rightarrow FeSiO_3$ Flux Slag

9. SO₂Cl₂ hydrolyse as
SO₂Cl₂ + 2H₂O → H₂SO₄ + 2HCl

For complete neutralization of product 16 mole of NaOH are required then how many mole of SO₂Cl₂ are taken initially

(1) 16 (2) 8 (3) 4 (4) 2 Ans. (3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
3 7340010333
Tockbox com/Resonance.du www.fuscular.com/Resonance.du www.yo.rube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#3

Sol. SO ₂ Cl ₂	+ 2H ₂ O → H ₂	SO ₄ + 2HCl			
a mole	ar	mole 2a mole			
(i) H ₂ S0	04 + 2NaOH -	→ Na ₂ SO ₄ + 2H ₂ O			
a mo	e 2a mole				
(ii) HCI	+ NaOH →	NaCl + H ₂ O			
2a mo	le 2a mole				
Total m	ole of NaOH	required = 4a = 16			
		a = 4			
10. 40 ml, 0	.05 M HCl titi	rated with 20 ml, 0.	1M NH ₄ OH then closest	pH of final solution	is:
[Given l	K _b (NH ₄ OH) =	÷ 10 ^{−5}]			
(1) 3.2		(2) 4.2	(3) 5.2	(4) 6.2	
Ans. (3)					
Sol.	HCI + NH4	OH → NH4CI + H2C			
Milimole	2 2	/			
	0 0	2			
[NH ₄ Cl]	$=\frac{2}{60}=\frac{1}{30}$ N	1 //			
	$pH = 7 - \frac{1}{2}p$	$^{Kb} - \frac{1}{2} \log C$			
	$=7-\frac{5}{2}-\frac{1}{2}$	$\log\left(\frac{1}{30}\right)$			
	$= 7 - 2.5 + \frac{1}{2}$	log (30)			
	$= 7-2.5 + \frac{1}{2}$				
	= 7 - 2.5 + 0.				

11. Find the enthalpy of formation of propane in (kJ / mole) using enthalpy of combustion of propane, graphite

```
Ans. (104)
Sol. 3 C (Graphite) + 4 H_2 (g) \rightarrow C<sub>3</sub> H_8 (g)
\Delta H_c^0 = 3\Delta H_c^0 (C, graphite) + 4 \Delta H_c^0 (H_2,g) -\Delta H_c^0 (H_3,g)
= 3 (-393.5) + 4 (-285.8) - (-2220)
= -1180.5 - 1143.2 + 2220
= -2323.7 + 2220
= -103.7 \text{ kJ/mole} \approx 104 \text{ kJ/mole}

Resonance Eduventures Ltd.
```

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
3740010333
Tockbook som Resonancedu
www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#4

```
Resonance | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY
         Concentration of HCOOH aqueous. Solution is 0.5 ml / L density of HCOOH solution is 1.05 g / ml. If
         depression in freezing point is 0.0405°C then vant Hoff factor is -
                                                                                            (4) 0.7
         (1) 1.2
                                    (2)1.9
                                                                (3) 2.2
         (2)
Ans.
         Let us take 1 lit solution, so it contain 0.5 ml HCOOH
Sol
                      Mass
         Density =
                     Volume
         Mass of Solution = d × V
                           = 1.05 \times 0.5
                           = 0.525 gram
         Mass of solution = 1 kg
         Mass of solvent = 1000 - 0.525
                           = 999.475 gram
         \Delta T_F = i kf x m
        0.0405 = i \times 1.86 \left[ \frac{0.525 \times 1000}{3} \right]
                              46×999.475
         0.0405 = i \times 0.02124
           i = 1.9
13.
         In the following reaction Br<sub>2</sub> + F<sub>2</sub> (excess) → 'A'
         On hydrolysis of A obtained anion is
         (1) Hypohalite
                                     (2) Halite
                                                                (3) Halate
                                                                                            (4) Per halate
Ans.
         (3)
Sol.
         Br<sub>2</sub> + 5F<sub>2</sub> (excess) → 2BrF<sub>5</sub>
         ^{+5}_{BrF_5} + 3H_2O \rightarrow HBrO_3 + 5HF
                         Bromic acid
14.
         List I
                                              List II
         (Reaction)
                                              (catalyst used)
         (I) N_2 + 3H_2 \rightarrow 2NH_3
                                             (a) Ni
         (II) CO + 3H_2 \rightarrow CH_4 + H_2O
                                             (b) Cu / ZnO - Cr<sub>2</sub>O<sub>3</sub>
         (III) CO + 2H<sub>2</sub> → CH<sub>3</sub>OH
                                             (c) K2O, / Al2O3 - Fe
         (IV) CO + H<sub>2</sub> → HCHO
                                             (d) Cu
         Correct match is
                  1 11 111
                                             IV
                                    b
                                             d
                           a
                           b
                                             d
         (3)
                           b
                                             d
         (4)
                           d
Ans.
         (1)
```

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
 7340010333
 vertex contract@resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE # 5

Resonance | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

Sol. (i) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron in Haber's process.

$$N_2(g) + 3H_2(g) \xrightarrow{Fc(s)} 2NH_3(g)$$

(ii) The selectivity of a catalyst is its ability to direct a reaction to yield a particular product. For example, starting with H_2 and CO, and using different catalysts, we get different products

$$CO(g) + 3H_2(g) \xrightarrow{N_i} CH_4(g) + H_2O(g)$$

(iii)
$$CO(g) + 2H_1(g) \xrightarrow{Cu/ZnO-Cr_1O_3} CH_3OH(g)$$

$$(iv)$$
 CO(g) + H₂(g) $\stackrel{Cu}{\longrightarrow}$ HCHO(g)

15. One of the following complex absorb minimum wave length of light.

- (a) [Co(NH₃)₆]3+
- (b) [Co(NH₃)₅ (H₂O)]³⁺
- (c) [Co(CN)₆]³-
- (d) [CoF₆]3-

The magnetic moment (spin only) of that complex is _____ BM

Ans. (0)

Sol. As complex absorb minimum wave length of light so complex has maximum splitting.

Order of splitting of complex : $[CoF_6]^{3-} < [Co(NH_3)_5(H_2O)]^{3+} < [Co(NH_3)_6]^{3+} < [Co(CN)_6]^{3-}$

So complex is [Co(CN)6]3-

$$_{27}\text{Co}^{3+} = 3\text{d}_64\text{s}^0 \Rightarrow \text{t}_{2q}^{2,2,2}, \text{e}_q^{0,0}$$

Number of unpaired electrons = 0

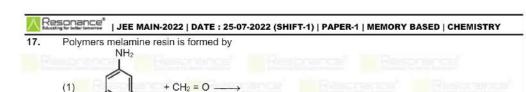
So u = 0

Compound X on heating with NH₃ gives B and on strong heating gives (C) C₈H₅NO₂.

(C) reacts with ethanolic KOH/Alkyl halide and then followed by alkaline hydroxide to give primary amine find X.

(1)
$$\bigcirc$$
 CHO (2) \bigcirc CHO (3) \bigcirc COOH (4) \bigcirc CHO OH

Ans. (3)


Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
Toctook com/Risconance&du Wetter.com/Risconance&du www.youtube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

(2)
$$H_2N$$
 H_2 $+$ CH_2 $=$ O \longrightarrow

(3)
$$H_2N$$
 + $CH_2 = O$ \longrightarrow

(4)
$$\frac{NH_2}{N} + CH_2 = 0$$

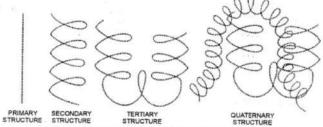
Ans. (4)

Sol. Melamine formaldehyde Resin:

Melamine Formaldehyde polymer (Melmac)

Melamine formaldehyde resin is used in the manufacture of unbreakable crockery.

18. Denaturation does not effects which structure of Protein


(1) Primary (2) Secondary (3) Te

(4) Quaternary

Ans. (1)

Sol. Denaturation of proteins :

When protein in native form is subjected to a physical change like temperature or pH, the H –bonds are disturbed. As a result globules get unfold and helices get uncoiled therefore proteins loses its activity. During denaturation 2° and 3° structures get destroyed but 1° structure remain the same. Ex: Coagulation of egg while on boiling and curdling of milk caused by bacteria present in milk.

Diagrammatic representation of four levels of protein structure (two subunits of two types in quaternary structure).

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 740010333 tectow.com/Resonance.du www.youtube.com/resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#7

Resonance* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

19. Which is absent in photochemical smog:

(1) NO (2) NO₂

 $(3) SO_2$

(4) HCHO

Ans. (3)

Sol. Like NO₂, O₃ is a toxic gas and both NO₂ and O₃ are strong oxidising agents: They can react with the unburnt hydrocarbons in the polluted air to produce compounds like formaldehyde, acrolein and peroxyacetyl nitrate (PAN).

$$\begin{array}{l} 3\text{CH}_4 + 2\text{O}_3 \longrightarrow 3\text{CH}_2\text{=O} + 3\text{H}_2\text{O} \\ \text{CH}_2\text{=CHCH=O} \text{ (acrolein)} \\ \text{CH}_3\text{COONO}_3 \text{ (peroxyacetyl nitrate, PAN)} \\ \parallel \end{array}$$

Classical Smog: It is also known as sulphurous smog or London smog (as first occured in London). It occurs in cool and humid climate. It is a mixture of smoke, fog and sulphur dioxide. Chemically because of the presence of SO₂ and carbon (soot) particles it is a reducing mixture and so it is also called as reducing smog.

20. PhSO₂CI. Pyridine Most probable product is KCN, DMF

Ans. (1)

- Which drug binds to the receptor site and inhibit its natural function and block messages when required?(1) Antagonist(2) Agonist(3) Anti histamine(4) Antacid
- Ans. (1)
- 22. Wrong Reaction is:

$$(1) \qquad CH_2-CN \qquad DIBAL-H \qquad C-H$$

$$(2) \qquad C-OC_2H_5 \qquad DIBAL-H \qquad C-H$$

$$(3) \qquad CH_2-CH \qquad CH_2/PtBaSO_4 \qquad C-OH$$

$$(4) \qquad CH_2-OH \qquad KMnO_4 \qquad C-OH$$

Ans. (1)

Resonance Eduventures Ltd.

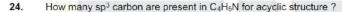
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | F-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333 ft receive com Resonance dou white com/Resonance dou www.youtube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE #8


Resonance* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

When A is oxidised it forms a compounds found in red ants. A on oxidation forms B, C is

the correct set of reagents in above reaction:

- (1) KMnO₄/H⁺ and O₃/Zn, H₂O
- (2) O₃/Zn, H₂O and KMnO₄/H⁺
- (3) KMnO₄ and K₂Cr₂O₇
- (4) K2Cr2O7 and KMnO4

Ans. (2)

Ans. ()

25. Statement I: KHSO4 dehydrates Glycerol to form acrolein

Statement II: Acrolein has fruity smell and reaction is used for test of Glycerol

Choose the most appropriate option :

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Ans. (3

26.
$$CH_3$$
 $C-OEt$ CH_2-C-CH_3 O^{--Et} (A)

Chiral carbon in product

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free : 1800 258 5555 🐚 7340010333 🚡 facebook.com/RescharceEdu 💆 twitter.com/RescharceEdu 🚨 www.youtube.com/rescharce ac.in

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#9

