

COMPUTER BASED TEST (CBT) Memory Based Questions & Solutions

Date: 25 July, 2022 (SHIFT-2) | TIME: (3.00 p.m. to 6.00 p.m) Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

| JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

PART: PHYSICS

- Deuteron & proton are accelerated by accelerating potential V_D & V_P. Ratio of their de-broglie wavelength $\frac{\sqrt{2}}{1}$ then find the ratio $\frac{V_P}{V_D}$?

Sol.

$$\frac{\sqrt{2} \operatorname{mqv}_{a}}{1} = \frac{\lambda_{D_{1}}}{\lambda_{P_{2}}} = \frac{\sqrt{m_{P}q_{P}V_{P}}}{\sqrt{m_{D}q_{D}V_{D}}}$$

$$2 = \frac{m_{P}q_{P}V_{P}}{m_{D}q_{D}V_{D}}$$

$$\frac{V_{P}}{V_{D}} = 4$$

An electron makes a transition from n^{th} state to ground state emitting wavelength λ then the value of n is

(1)
$$\sqrt{\frac{xR}{3\lambda R-1}}$$

(2)
$$\sqrt{\frac{2\lambda R}{2\lambda R - 1}}$$

(3)
$$\sqrt{\frac{\lambda R}{\lambda R - 1}}$$

(4)
$$\sqrt{\frac{6\lambda R}{\lambda R - 1}}$$

Ans.

Sol. electron $n^{th} \rightarrow n = 1$ n is term of > & R

$$\frac{1}{\lambda} = R \left[1 - \frac{1}{n^2} \right]$$

$$\frac{1}{\lambda R} = 1 - \frac{1}{n^2}$$

$$\frac{1}{n^2} = 1 - \frac{1}{\lambda R}$$

$$\frac{1}{n^2} = \frac{\lambda R - 1}{\lambda R}$$

$$n = \sqrt{\frac{\lambda R}{\lambda R}}$$

Force required to balance all the forces given in above diagram is

- (1) $\sqrt{2}$ at 45° with x-axis
- (3) $\sqrt{2}$ at 60° with x-axis
- (2) √3 at 45° with x-axis
- Ans. (1)
- (4) √3 at 60° with x-axis

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#1

RESCHANCE | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Given forces in diagram are

$$\vec{F}_1 = 5i$$

$$\vec{F}_2 = -6\hat{i}$$

$$\vec{F}_3 = 7\hat{j}$$

$$\vec{F}_4 = -8\hat{j}$$

Let F₅ is required force then

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 + \vec{F}_5 = 0$$

$$-\hat{i}-\hat{j}+\vec{F}_5=0$$

$$\therefore \vec{F}_5 = \hat{i} + \hat{j}$$

$$|\vec{F}_5| = \sqrt{2}N$$
 & at 45° with +ve x-axis

Flax passing thing a coil is $\phi = 8t^2 - 9t + 2$. Resistance of coil is 20Ω find current in loop t = 0.25 sec in ampere :

$$(1)\frac{1}{3}$$

$$(2)\frac{1}{5}$$

(3)
$$\frac{1}{6}$$

$$(4) \frac{1}{4}$$

Ans.

Ans. (4)
Sol.
$$\phi = 8t^2 - 9t + 2$$

R = 20Ω

$$|e| = \frac{d\phi}{dt}$$

at t = 0.25 s
|e| = |16 × 0.25 - 9| = 5V

$$\therefore I = \frac{5}{20} = \frac{1}{4} A.$$

- 5. Electric field of EM wave is E(x, t) = $54 \cos(2 \times 10^{7}x + 6 \times 10^{15}t)$ v/m Maximum value of magnetic field will be
 - (1) $6 \times 10^{-7} \text{ T}$ (2) $12 \times 10^{-7} \text{ T}$
- (3) $18 \times 10^{-7} \text{ T}$
- $(4) 4 \times 10^{-7} T$

Ans. (3)

- Sol. $B_0 = \frac{E_0}{C}$ = $\frac{54}{3 \times 10^{10}}$ = 18×10^{-7} T
- 6. Maximum height and range of a projectile thrown at an angle θ with horizontal are equal. Then the value of θ is :
 - (1) tan-12
- (2) tan-14
- (3) tan-13
- (4) tan-15

Ans. (2

Sol.
$$H = H = \frac{u^2 \sin^2 \theta}{2g}$$

and
$$R = \frac{u^2 \sin 2\theta}{g}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 T beckek com/ResonanceEdu v with reson/ResonanceEdu www.you.ube.com/resonance.ac.in | Ding resonance ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#2

Resonance* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

$$\therefore \frac{H}{R} = \frac{\tan \theta}{4}$$

but given H = R

$$\therefore \frac{\tan \theta}{4} = 1$$

$$\tan \theta = 4$$

- θ = tan⁻¹4
 In a rectilinear motion speed of particle is increasing at the rate of 5 m/s per metre. Determine acceleration in m/s² at the instant when velocity is 20 m/s.
 - (1) 50 m/s²
- (2) 100 m/s²
- (3) 200 m/s²
- (4) 40 m/s²

Ans. (2)

Sol.
$$a = a = \frac{vdv}{ds}$$

$$\frac{dv}{ds} = 5$$

$$= 100 \text{ m/s}^2$$

8. In potentiometer circuit. A cell of end E was balanced for balance length of 250 cm. Resistance of potentiometer wire = $20~\Omega$. Length of potentiometer wire = 10~m. Determine emf E.

(1) 2 V Ans. (1)

Sol.
$$i = \frac{20}{R + R_h} = \frac{20}{20 + 30} = \frac{20}{50} = \frac{2}{5}$$
 Amp.

y = potential gradient =
$$\frac{iR}{L} = \frac{2}{5} \times \frac{20}{10} = \frac{4}{5}$$
 V/m

Balance length = 250 cm = 2.5 metre

E = y × Balance length =
$$\frac{4}{5} \times 2.5 = 2$$
 volt

Ans 2 volt

9. Maximum and minimum Amplitude of modulated signal are 6V & 2V then modulation index will be

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
**Tracebeek.com/Resonance&u

**www.resonance&u

**www.res

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#3

Resonance Eduventures Ltd.

Sol.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

$$V_{\text{sound}} = \sqrt{\frac{Y_{\text{mix}}RT}{M_{\text{min}}}}$$

$$V_{rms} = \sqrt{2} V_{sound}$$

$$\sqrt{\frac{3RT}{M_{mix}}} = \sqrt{2} \sqrt{\frac{V_{mix}RT}{M_{mix}}}$$

$$\sqrt{3} = \sqrt{2}\sqrt{Y_{mix}}$$

$$Y_{mix} = \frac{3}{2}$$

$$\frac{n_1Cp_1 + n_2Cp_2}{n_1Cv_1 + n_2Cv_2} = \frac{3}{2}$$

Put Cp₁ = Cp of He =
$$\frac{5R}{2}$$
 & Cp₂ = Cp of H₂ $\Rightarrow \frac{7R}{2}$

$$CV_1 = CV$$
 of He = $\frac{3R}{2}$ & $Cv_2 = Cv$ of $H_2 \Rightarrow \frac{5R}{2}$

$$\frac{2 \times \frac{5R}{2} + n \times \frac{7R}{2}}{2 \times \frac{3R}{2} + n \times \frac{5R}{2}} = \frac{3}{2}$$

$$\frac{10+7n}{6+5n} = \frac{3}{2} \quad \therefore n=2$$

12. Length of second's pendulum at height h = 2R from the surface of earth : (Take π^2 = 10 Rg = 10 m/s²)

$$(1) \frac{1}{3} m$$

(2)
$$\frac{1}{4}$$
 m

(3)
$$\frac{1}{9}$$
n

$$(4) \frac{1}{6} m$$

Ans. (3)

Sol.
$$g' = \frac{GM}{r^2} = \frac{GM}{(R+h)^2}$$

$$g' = \frac{GM}{(3R)^2}$$

$$=\frac{g}{g}$$

$$T = 2\pi \sqrt{\frac{\ell}{g}} = 2\pi \sqrt{\frac{\ell'}{(g/9)}}$$

$$2\pi\sqrt{\frac{9}{9}}$$

$$\ell' = \frac{g}{9\pi^2} = \frac{1}{9}$$

Radium of isolated spherical capacitor is R1 and another spherical capacitor having inner and outer 13. radium R₁ & R₂. If capacity of spherical capacitor is u times of capacity of isolated capacitor then ratio of R₁ R₂ will be.

(1)
$$\frac{1}{n} + \frac{1}{n}$$
 (2) $\frac{1}{n} - \frac{1}{n}$ (3) $\frac{1}{n}$

(2)
$$1 - \frac{1}{n}$$

$$(3) \frac{1}{n}$$

$$(4) 2 + \frac{1}{n}$$

Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
accepted com/ResonanceEdul www.nosuble.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

RESONANCE* | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.
$$n \times 4\pi \in {}_{0}R_{1} = \begin{bmatrix} 4\pi \in {}_{0} (R_{2}R_{1}) \\ R_{2} - R_{1} \end{bmatrix}$$

$$n = \frac{R_2}{R_2 - R_1}$$

$$\therefore \frac{R_2 - R_1}{R_2} = \frac{1}{n} \Rightarrow 1 - \frac{R_1}{R_2} = \frac{1}{n} \Rightarrow \frac{R_1}{R_2} = 1 - \frac{1}{n}$$

Ratio of efficiency of Carnot cycle. Where temp of source and sink are 447°C, 147°C and 947°C & 47°C 14.

$$\eta_1 = 1 - \frac{147 + 273}{447 + 273} = 1 - \frac{420}{720} = 0.417$$

$$\eta_1 = 1 - \frac{147 + 273}{447 + 273} = 1 - \frac{420}{720} = 0.417$$

$$\eta_2 = 1 - \frac{47 + 273}{947 + 273} = 1 - \frac{320}{720} = 0.734$$

$$\frac{\eta_1}{\eta_2} = 0.565$$

- A coil have two turns, when current flows in it magnetic field at center is B₁, when coil is again reconstructed and number of turns be comes 5 and same current flow in it. Then magnetic field at center will be B2 then ratio of B1 & B2 is:
- $(3) \frac{4}{25}$

(3) Ans.

Sol.
$$B_1 = 2 \times \frac{\mu_0 I}{2R_4}$$

and B₂ =
$$5 \times \frac{\mu_0 I}{2R_2}$$

$$\therefore \frac{B_1}{B_2} = \frac{2}{5} \times \frac{R_2}{R_1}$$

$$2 \times 2\pi R_1 = 5 \times 2\pi R_2$$

$$2R_1 = 5R_2$$
 from (1) & (2)

$$\frac{B_1}{B_2} = \frac{4}{25}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 are book com/Resonancedul www.noulube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

Equivalent resistance of circuit will be :

equivalent ckt will be

When object is raised to height $\frac{5R}{4}$ above earth surface. Determine the percentage charge in weight of 17.

object on raising it to that height.

Ans. 80.25%

Sol. $g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$ $g' \frac{g}{\left(1 + \frac{5R}{4R}\right)^2}$ $g' = \frac{g \times 16}{81}$ $\frac{g'}{g} = \frac{16}{81}$ % decrease in height = $\left(\frac{g - g'}{g}\right) \times 100$ = $\left(1 - \frac{16}{81}\right) \times 100$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
toctock.com/Resonancedul www.resonancedul www

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE#7

Resonance | JEE MAIN-2022 | DATE : 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

18. Two capacitor of capacitance 3C and C are connected in parallel with battery of 6 volt. Now battery is disconnected and dielectric slab of k = 6 is filled in capacitor of capacitance C. Now find the common potential of combination.

Ans. 2.66 Sol.

80.25%

charge on 3C \Rightarrow 3C \times 6

⇒ 18C

charge on C = C × 6

⇒ 6C

Now Battery is disconnected and k = 6 is filled in C :. New value of capacitance = kC = 6C

19. Ratio of energy of photon when electron in hydrogen atom comes from 3rd excited state to 2nd excited state and energy of photon having maximum possible energy when electron in H atom comes in ground state will be x/(x+4) then find value of x.

Ans. 0.2

Sol. In first case E₁ = $\left(-\frac{13.6}{4^2}\right) - \left(\frac{-13.6}{3^2}\right) = \frac{7}{144} \times 13.6$

In second case $E_2 = 13.6$

 $\frac{E_1}{E_2} = \frac{7}{144}$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7440010333 T neckek com/Resonancedul v with reson/Resonancedul w www.you.ube.com/resonance ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

PAGE # 8

Resonance | JEE MAIN-2022 | DATE: 25-07-2022 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS A liquid drop of radius r and density σ floats in a liquid of density ρ . If drop is half imersed in liquid then find radius of drop 'r' if surface tension of liquid is T. (2) $\sqrt{\frac{2T}{(3\sigma - \rho)g}}$ Ans. weight = force of bouncy + force of S.T. $\sigma \times \frac{4}{3} \pi r^3 \times g = \rho \times \frac{2}{3} \pi r^3 \times g + T \times 2\pi r$ $\sigma \times \frac{2r^2}{3}g = \frac{\rho r^2 g}{3} + T$ $\frac{r^2}{3}(2\sigma g - \rho g) = T$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 seebek com/Resonancedu v butter.com/Resonancedu www.yo.ubbe.com/resowatch objectsonance.ac.in

