JEE Main 2024 Mock Test 8 Time Allotted: 3 Hours Maximum Marks: 300 Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. ### **Important Instructions:** - 1. The test is of 3 hours duration. - 2. This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300. - 3. This question paper contains **Three Parts. Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is Mathematics. Each part has only two sections: **Section-A** and **Section-B**. - 4. **Section A**: Attempt all questions. - 5. **Section B :** Do any 5 questions out of 10 Questions. - 6. **Section-A (01 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **–1 mark** for wrong answer. - 7. **Section-B** (1 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries **+4 marks** for correct answer and **–1 mark** for wrong answer. # PART - A (PHYSICS) ### SECTION - A (One Options Correct Type) This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct. - Q1. The equation of a circle is given by $x^2 + y^2 = a^2$, where a is the radius. If the equation is modified to change the origin other than (0,0), then find out the correct dimensions of A and B in a new equation : $(x At)^2 + \left(y \frac{t}{B}\right)^2 = a^2$. The dimensions of t given as $\left[T^{-1}\right]$. - (A) $A = [L^{-1}T^{-1}], B = [LT^{-1}]$ (B) $A = [L^{-1}T], B = [LT^{-1}]$ (C) $A = [LT], B = [L^{-1}T^{-1}]$ - (D) $A = \lceil L^{-1}T^{-1} \rceil, B = \lfloor LT \rfloor$ - **Q2.** For the given gates combination, the correct truth table will be (A) A B X 0 0 0 0 1 1 1 0 1 1 1 1 (B) A B X 0 0 0 0 1 1 1 0 1 (C) A B X 0 0 1 0 1 0 1 0 0 1 1 0 - (D) A B X 0 0 1 0 1 0 1 0 1 1 1 0 - Q3. A fully loaded boeing aircraft has a mass of 5.4×10^5 kg. Its total wing area is 500m^2 . It is in level flight with a speed of 1080km/h. If the density of air ρ is 1.2kg m^{-3} , the fractional increase in the speed of the air on the upper surface of the wing relative to the lower surface in percentage will be. (g = 10 m/s^2) - (A) 10 (B) 6 (D) 8 (C) 16 - ט) ס - **Q4.** The time taken by an object to slide down 45° rough inclined plane is n times as it takes to slide down a perfectly smooth 45° incline plane. The coefficient of kinetic friction between the object and the incline plane is : - (A) $1 + \frac{1}{n^2}$ (B) $\sqrt{1-\frac{1}{n^2}}$ (C) $\sqrt{\frac{1}{1-n^2}}$ (D) $1 - \frac{1}{n^2}$ - **Q5.** The time period of a satellite of earth is 24 hours. If the separation between the earth and the satellite is decreased to one fourth of the previous value, then its new time period will become. - (A) 6 hours (B) 3 hours (C) 4 hours - (D) 12 hours - **Q6.** With the help of potentiometer, we can determine the value of emf of a given cell. The sensitively of the potentiometer is - (A) Directly proportional to the length of the potentiometer wire - (B) Directly proportional to the potential gradient of the wire - (C) Inversely proportional to the potential gradient of the wire - (D) Inversely proportion to the length of the potentiometer wire Choose the correct option for the above statements: (A) A only (B) B and D only (C) C only - (D) A and C only - Q7. A force acts for 20s on a body of mass 20 kg, starting from rest, after which the force ceases and then body describes 50m in the next 10s. The value of force will be: - (A) 40 N (B) 20 N (C) 5 N - (D) 10 N - Q8. An object moves at a constant speed along a circular path in a horizontal plane with centre at the origin. When the object is at x = +2 m, its velocity is -4jm/s. The object's velocity (v) and acceleration (a) at x = -2m will be - (A) $v = -4i \,\text{m} / \text{s}$, $a = -8j \,\text{m} / \text{s}^2$ (B) $v = 4\hat{j}m/s, a = 8\hat{i}m/s^2$ (C) v = -4im/s, $a = 8im/s^2$ - (D) $v = 4im/s, a = 8jm/s^2$ - **Q9.** A scientist is observing a bacteria through a compound microscope. For better analysis and to improve its resolving power he should. (Select the best option) - (A) Decrease the diameter of the objective lens - (B) Increase the refractive index of the medium between the object and objective lens - (C) Increase the wave length of the light - (D) Decrease the focal length of the eye piece. - **Q10.** The modulation index for an A.M. wave having maximum and minimum peak-to-peak voltages of 14 mV and 6 mV respectively is - - (A) 0.4 (B) 1.4 (C) 0.2 - (D) 0.6 - **Q11.** For the given figures, choose the correct options : - (A) The rms current in figure (a) is always equal to that in figure(b) - (B) At resonance, current in (b) is less than that in (a) - (C) The rms current in circuit (b) can never be larger than that in(a) - (D) The rms current in circuit (b) can be larger than that in (a) #### Q12. Identify the correct statements from the following - A. Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket is negative. - B. Work done by gravitational force in lifting a bucket out of a well by a rope tied to the bucket is negative. - C. Work done by friction on a body sliding down an inclined plane is positive. - D. Work done by an applied force on a body moving on a rough horizontal plane with uniform velocity is zero. - E. Work done by the air resistance on an oscillating pendulum is negative. Choose the correct answer from the options given below: (A) B and E only (B) A and C only (C) B and D only (D) B, D and E only Q13. Heat energy of 184 kJ is given to ice of mass 600 g at -12°C. Specific heat of ice is 2222.3 J kg^{-1°}C⁻¹ and latent heat of ice is 336 kJ/kg⁻¹ - A. Final temperature of system will be 0°C. - B. Final temperature of the system will be greater than 0°C. - C. The final system will have a mixture of ice and water in the ratio of 5:1. - D. The final system will have a mixture of ice and water in the ratio of 1:5. - E. The final system will have water only. Choose the correct answer from the options given below: (A) B and D only (B) A and D only (C) A and E only (D) A and C only **Q14.** Given below are statements: Statement I: Electromagnetic waves are not deflected by electric and magnetic field. Statement II: The amplitude of electric field and the magnetic field in Electromagnetic waves are related to each other as $E_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} B_0$. In the light of the above statements, choose the correct answer from the options given below: - (A) Both Statement I and Statement II are false - (B) Statement I is false but statement II is true - (C) Both Statement I and Statement II are true - (D) Statement I is true but statement II is false - Q15. Substance A has atomic mass number 16 and half life of 1 day. Another substance B has atomic mass number 32 and half life of $\frac{1}{2}$ day. If both A and B simultaneously start undergo radio activity at the same time with initial mass 320 g each, how many total atoms of A and B combined would be left after 2 days. (A) 6.76×10^{24} (B) 1.69×10^{24} (C) 3.38×10^{24} - (D) 6.76×10^{23} - Q16. The electric current in a circular coil of four turns produces a magnetic induction 32 T at its centre. The coil is unwound and is rewound into a circular coil of single turn, the magnetic induction at the centre of the coil by the same current will be: (A) 16 T (B) 4T (C) 2T (D) 8T - Q17. The ratio of de-Broglie wavelength of an α particle and a proton accelerated from rest by the same potential is $\frac{1}{\sqrt{m}}$, the value of m is - - (A) 2 (B) 8 (C) 4 - (D) 16 - Q18. A square loop of area 25cm^2 has a resistance of 10Ω . The loop is placed in uniform magnetic field of magnitude 40.0 T. The plane of loop is perpendicular to the magnetic field. The work done in pulling the loop out of the magnetic field slowly and uniformly in 1.0 sec, will be - (A) 5×10^{-3} J (B) 1.0×10^{-3} J (C) 2.5×10^{-3} J - (D) 1.0×10^{-4} J - **Q19.** At 300 K, the rms speed of oxygen molecules is $\sqrt{\frac{\alpha+5}{\alpha}}$ times to that of its average speed in the gas. Then, the value of α will be $$\left(\text{used }\pi=\frac{22}{7}\right)$$ (A) 27 (B) 28 (C) 32 - (D) 24 - Q20. A point charge 2×10^{-2} C is moved from P to S in a uniform electric of $30NC^{-1}$ directed along positive x-axis. If coordinates of P and S are (1,2,0) m and (0,0,0) m respectively, the work done by electric field will be - (Å) -600 mJ (B) 1200 mJ (C) -1200 mJ (D) 600 mJ ### SECTION - B #### (Numerical Answer Type) This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. - Q1. A particle of mass 250g executes a simple harmonic motion under a periodic force F = (-25x)N. The particle attains a maximum speed of 4m/s during its oscillation. The amplitude of the motion is _____cm. - Q2. An inductor of inductance, $2\mu H$ is connected in series with a resistance, a variable capacitor and an AC source of frequency 7kHz. The value of capacitance for which maximum current is drawn into the circuit is $\frac{1}{x}$ F, where the value of x is ______ (Take $\pi = \frac{22}{7}$) - Q3. A null point is found at 200 cm in potentiometer when cell in secondary circuit is shunted by 5Ω . When a resistance of 15Ω is used for shunting, null point moves to 300cm. The internal resistance of the cell is ______ Ω . - Q4. Unpolarised light is incident on the boundary between two dielectric media, whose dielectric constants are 2.8(medium 1) and 6.8 (medium 2), respectively. To satisfy the condition, so that the reflected and refracted rays are perpendicular to each other, the angle of incidence should be $\tan^{-1}\left(1+\frac{10}{\theta}\right)^{\frac{1}{2}}$ the value of θ is _____. (Given for dielectric media, $\mu_r = 1$) - **Q5.** A car is moving on a circular path of radius 600m such that the magnitude of the tangential acceleration and centripetal acceleration are equal. The time taken by the car to complete first quarter of revolution, if it is moving with an initial speed of 54 km/hr is $t(1-e^{-\pi/2})$ s. The value of t is _____. - Q6. A metal block of base area 0.20 m² is placed on a table. as shown in figure. A liquid film of thickness 0.25 mm is inserted between the block and the table. The block is pushed by a horizontal force of 0.1 N and moves with a constant speed. If the viscosity of the liquid is 5.0 x 10⁻³ PI, the speed of block is _____x10⁻³ m/s. **Q7.** When two resistance R_1 and R_2 connected in series and introduced into the left gap of a meter bridge and a resistance of 10Ω is introduced into the right gap, a null point is found at 60cm from left side. When R_1 and R_2 are connected in parallel and introduced into the left gap, a resistance of 3Ω is introduced into the right-gap to get null point at 40cm from left end. The product of R_1 and R_2 is _____ Ω^2 - **Q8.** For a charged spherical ball, electrostatic potential inside the ball varies with r as $V = 2ar^2 + b$. Here, a and b are constant and r is the distance from the centre. The volume charge density inside the ball is $-\lambda a\epsilon$. the value of λ is _____. ϵ = permittivity of the medium - Q9. In an experiment of measuring the refractive index of a glass slab using traveling microscope in physics lab, a student measures real thickness of the glass slab as 5.25 mm and apparent thickness of the glass slab as 5.00 mm. Travelling microscope has 20 divisions in one cm on main scale and 50 divisions on vernier scale is equal to 49 divisions on main scale. The estimate uncertainly in the measurement of refractive index of the slab is $\frac{x}{10} \times 10^{-3}$, where x is _____. - **Q10.** A particle of mass 100g is projected at time t=0 with a speed 20 ms⁻¹ at an angle 45° to the horizontal as given in the figure. The magnitude of the angular momentum of the particle about the starting point at time t=2s is found to be \sqrt{K} kg m²/s. The value of K is _____. (Take g=10 ms²) # PART – B (CHEMISTRY) ### SECTION - A #### (One Options Correct Type) This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct. **Q1.** Given below are two statements: Statement I: Nickel is being used as the catalyst for producing syn gas and edible fats. Statement II: Silicon forms both electron rich and electron deficient hydrides. In the light of the above statements, choose the most appropriate answer from the options given below: - (A) Statement I is correct but Statement II is incorrect - (B) Statement I is incorrect but Statement II is correct - (C) Both the Statements I and II are correct - (D) Both the statements I and II are incorrect - Q2. The major component of which of the following ore is sulphide based mineral? - (A) Sphalerite (B) Siderite (C) Calamine - (D) Malachite - **Q3.** The one giving maximum number of isomeric alkenes on dehydrohalogenation reaction is (excluding rearrangement) - (A) 2-Bromopentane - (B) 2-Bromopropane - (C) 2-Bromo-3,3- dimethylpentane - (D) 1-Bromo-2-methylbutane - **Q4.** The concentration of dissolved oxygen in water for growth of fish should be more than X ppm and Biochemical oxygen demand in clean water should be less than Y ppm X and Y in ppm are, respectively. - (A) X Y (B) X Y (C) X Y 12 - (D) X Y - **Q5.** Find out the major products from the following reaction sequence. (A) $$A = CI$$ $B = CI$ $C = NH_2$ CI $C = NH_2$ CI (B) $$A = D$$ $B = CI$ CO_2H **Q6.** Correct order of spin only magnetic moment of the following complex ions is (Given At no. Fe:26, Co:27) (A) $$\left[\text{CoF}_{6} \right]^{3-} > \left[\text{FeF}_{6} \right]^{3-} > \left[\text{Co}(\text{C}_{2}\text{O}_{4})_{3} \right]^{3-}$$ (B) $$\left[\text{FeF}_6 \right]^{3-} > \left[\text{Co}(\text{C}_2\text{O}_4)_3 \right]^{3-} > \left[\text{CoF}_6 \right]^{3-}$$ (C) $$\left[\text{FeF}_6 \right]^{3-} > \left[\text{CoF}_6 \right]^{3-} > \left[\text{Co}(\text{C}_2\text{O}_4)_3 \right]^{3-}$$ $$\text{(D)} \left[\text{Co} \left(\text{C}_2 \text{O}_4 \right)_3 \right]^{3-} > \left[\text{CoF}_6 \right]^{3-} > \left[\text{FeF}_6 \right]^{3-}$$ - Q7. An indicator 'X' is used for studying the effect of variation in concentration of iodide on the rate of reaction of iodide ion with H_2O_2 at room temperature. The indicator 'X' forms blue colored complex with compound 'A' present in the solution. The indicator 'X' and compound 'A' respectively are - (A) Starch and iodine (B) Methyl orange and H₂O₂ (C) Methyl orange and iodine - (D) Starch and H₂O₂ - **Q8.** Following tetrapeptide can be represented as - (F, L, D, Y, I, Q, P are one letter codes for amino acids) - (A) FLDY (B) PLDY (C) YQLF (D) FIQY - **Q9.** A doctor prescribed the drug Equanil to a patient. The patient was likely to have symptoms of which disease? - (A) Depression and hypertension (B) Stomach ulcers (C) Anxiety and stress (D) Hyperacidity **Q10.** Given below are two statements: **Statement I:** The decrease in first ionization enthalpy from B to AI is much larger than that from AI to Ga. Statement II: The d orbitals in Ga are completely filled. In the light of the above statements, choose the most appropriate answer from the options given below: - (A) Both the statement I and II are incorrect - (B) Both statement I and II are correct - (C) Statement I is correct but statement II is incorrect - (D) Statement I is incorrect but statement II is correct - **Q11.** When a hydrocarbon A undergoes combustion in the presence of air, it requires 9.5 equivalents of oxygen and produces 3 equivalents of water. What is the molecular formula of A? (A) C_6H_6 (B) C_8H_6 (C) C_9H_6 (D) C₉H₉ **Q12.** Find out the major product for the following reaction. Q13. Match List I with List II | List-I | | | List-II | | |--------|-----------------------|------|-------------------------|--| | Α. | Elastomeric polymer | I. | Urea formaldehyde resin | | | B. | Fibre polymer | II. | Polystyrene | | | C. | Thermosetting Polymer | III. | Polyester | | | D. | Thermoplastic Polymer | IV. | Neoprene | | Choose the correct answer from the options given below: (A) A- II, B-I, C-IV, D- III (B) A-IV, B-I, C-III, D-II (C) A-IV, B-III, C-I, D-II - (D) A-II, B-III, C-I, D-IV - **Q14.** Which of the following relations are correct? - (A) $\Delta U = q + p\Delta V$ - (B) $\Delta G = \Delta H T\Delta S$ - (C) $\Delta S = \frac{q_{rev}}{T}$ - (D) $\Delta H = \Delta U \Delta nRT$ Choose the most appropriate answer from the options given below: (A) B and C only (B) B and D only (C) C and D only (D) A and B only - Q15. The set of correct statements is: - (i) Maganese exhibits +7 oxidation state in its oxide. - (ii) Ruthenium and Osmium exhibit +8 oxidation in their oxides. - (iii) Sc shows +4 oxidation state which is oxidizing in nature. - (iv) Cr shows oxidizing nature in +6 oxidation state. - (A) (i) and (iii) (B) (i), (ii) and (iv) (C) (ii) and (iii) (D) (ii), (iii) and (iv) #### Q16. Match List I with List II | List-I | | | List-II | | |--------|-----------------|------|----------------------------------------------------------------------------------------------------------------------------------|--| | A. | Osmosis | I. | Solvent molecules pass through semi permeable membrane towards solvent side | | | B. | Reverse osmosis | II. | Movement of charged colloidal particles under the influence of applied electric potential towards oppositely charged electrodes. | | | C. | Electro osmosis | III. | Solvent molecules pass through semi permeable membrane towards solution side. | | | D. | Electrophoresis | IV. | Dispersion medium moves in an electric field. | | Choose the correct answer from the options given below: (A) A- I, B-III, C-IV, D- II (B) A-I, B-III, C-II, D-IV (C) A-III, B-I, C-II, D-IV - (D) A-III, B-I, C-IV, D-II - **Q17.** According to MO theory the bond orders for O_2^{2-} , CO and NO⁺ respectively, are - (A) 1,3 and 3 (B) 1,2 and 3 (C) 1,3 and 2 (D) 2, 3 and 3 - **Q18.** A solution of CrO₅ in amyl alcohol has a _____ colour. - (A) Green (B) Yellow (C) Blue (D) Orange-Red - **Q19.** Reaction of propanamide with Br₂/KOH(aq) produces: - (A) Ethylnitrile (B) Ethylamine (C) Propylamine (D) Propanenitrile #### Q20. Match List I with List II | Material Elect With Elect II | | | | | |------------------------------|--------------------------------------|---------|----------------------------------------------------|--| | List-I | | List-II | | | | A. | Van't Hoff factor, i | I. | Cryoscopic constant | | | B. | K _f | II. | Isotonic solutions | | | C. | Solutions with same osmotic pressure | III. | Normal molar mass Abnormal molar mass | | | D. | Azeotropes | IV. | Solutions with same composition of vapour above it | | Choose the correct answer from the options given below: (A) A-III, B-I, C-IV, D-II (B) A-III, B-I, C-II, D-IV (C) A-III, B-II, C-I, D-IV (D) A-I, B-III, C-II, D-IV #### SECTION - B #### (Numerical Answer Type) This section contains **10** Numerical based questions. The answer to each question is rounded off to the nearest integer value. | Q1. | The denticity of the | ligand present in the Fehli | ng's reagent is | |-----|----------------------|-----------------------------|-----------------| |-----|----------------------|-----------------------------|-----------------| - **Q2.** For conversion of compound $A \rightarrow B$, the rate constant of the reaction was found to be 4.6×10^{-5} Lmol⁻¹ s⁻¹. The order of the reaction is - Q3. The volume of HCI, containing 73gL⁻¹, required to completely neutralize NaOH obtained by reacting 0.69 g of metallic sodium with water, is_____ mL. (Nearest Integer) (Given: molar Masses of Na, Cl, O, H, are 23, 35.5, 16 and 1 g mol⁻¹ respectively) - Q4. On heating LiNO₃ gives how many compounds among the following?_______ Li₂O, N₂,O₂, LiNO₂, NO₂ - **Q5.** At 298 K $$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), K_1 = 4 \times 10^5$$ $$N_2(g) + O_2(g) \rightleftharpoons 2NO(g), K_2 = 1.6 \times 10^{12}$$ $$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g), K_3 = 1.0 \times 10^{-13}$$ Based on above equilibria, the equilibrium constant of the reaction, $$2NH_3(g) + \frac{5}{2}O_2(g) \rightleftharpoons 2NO(g) + 3H_2O(g)$$ is _____x10⁻³³ (Nearest integer) - Q6. Assume that the radius of the first Bohr orbit of hydrogen atom is 0.6 Å. The radius of the third Bohr orbit of He⁺ is ______ picometer. (Nearest integer) - Q7. A metal M forms hexagonal close- packed structure. The total number of voids in 0.02 mol of it is $\times 10^{21}$ (Nearest integer). (Given $N_A = 6.02 \times 10^{23}$) - **Q8.** When 0.01 mol of an organic compound containing 60% carbon was burnt completely, 4.4 g of CO₂ was produced. The molar mass of compound is __ g mol⁻¹(Nearest integer) - **Q9.** Total number of acidic oxides among N₂O₃, NO₂,N₂O,Cl₂O₇,SO₂,CO,CaO,Na₂O and NO is_____. - **Q10.** The equilibrium constant for the reaction $$Zn(s) + Sn^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Sn(s)$$ is 1×10^{20} at 298 K. The magnitude of standard electrode potential of Sn/Sn^{2+} if $E_{zn^{2+}/Zn}^{\theta} = -0.76V$ is ______ $\times 10^{-2}$ V (Nearest integer) $$Given: \frac{2.303RT}{F} = 0.059V$$ # PART - C (MATHEMATICS) ### **SECTION - A** #### (One Options Correct Type) This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct. **Q1.** Consider a function $f: IN \rightarrow IR$, satisfying $$f(1) + 2f(2) + 3f(3) + + xf(x) = x(x+1)f(x); x \ge 2$$ with $f(1) = 1$. Then $\frac{1}{f(2022)} + \frac{1}{f(2028)}$ is equal to (A) 8200 (B) 8100 (C) 8400 - (D) 8000 - Q2. Let K be the sum of the coefficients of the odd powers of x in the expansion of $\left(1+x\right)^{99}$. Let a be the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$. If $\frac{^{200}C_{99}K}{a}=\frac{2^{\ell}m}{n}$, where m and n are odd numbers, then the ordered pair (ℓ,n) is equal to - (A) (50, 51) (B) (51, 99) (C) (50, 101) - (D) (51, 101) - **Q3.** The value of the integral $\int_{1}^{2} \left(\frac{t^4 + 1}{t^6 + 1} \right) dt$ is - (A) $\tan^{-1}\frac{1}{2} + \frac{1}{3}\tan^{-1}8 \frac{\pi}{3}$ (B) $\tan^{-1}\frac{1}{2} - \frac{1}{3}\tan^{-1}8 + \frac{\pi}{3}$ (C) $\tan^{-1} 2 - \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$ - (D) $\tan^{-1} 2 + \frac{1}{3} \tan^{-1} 8 \frac{\pi}{3}$ - **Q4.** The set of all values of $t \in R$, for which the matrix $$\begin{bmatrix} e^t & e^{-t}\left(sint-2cost\right) & e^{-t}\left(-2sint-cost\right) \\ e^t & e^{-t}\left(2sint+cost\right) & e^{-t}\left(sint-2cost\right) \\ e^t & e^{-t}cost & e^{-t}sint \end{bmatrix} \text{ is invertible, is }$$ (A) R (B) $\left\{ \left(2k+1\right)\frac{\pi}{2}, k \in Z \right\}$ (C) $\left\{k\pi + \frac{\pi}{4}, k \in Z\right\}$ - (D) $\{k\pi, k \in Z\}$ - Q5. If the tangent at a point P on the parabola $y^2 = 3x$ is a parallel to the line x + 2y = 1 and the tangents at the points Q and R on the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ are perpendicular to the line x y = 2, then the area of the triangle PQR is: - (A) $\frac{9}{\sqrt{5}}$ (B) $\frac{3}{2}\sqrt{5}$ (C) $3\sqrt{5}$ (D) $5\sqrt{3}$ **Q6.** Let R be a relation defined on N as a R b if 2a + 3b is a multiple of $5, a, b \in N$. Then R is (A) not reflexive - (B) an equivalence relation - (C) symmetric but not transitive - (D) transitive but not symmetric Q7. The shortest distance between the lines $\frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5}$ and $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3}$ is (A) $3\sqrt{3}$ (B) $4\sqrt{3}$ (C) $2\sqrt{3}$ (D) $5\sqrt{3}$ **Q8.** The set of all values of λ for which the equation $\cos^2 2x - 2\sin^4 x - 2\cos^2 x = \lambda$ has a real solution x, is $(A) \left[-2, -\frac{3}{2} \right]$ (B) $\left[-1, -\frac{1}{2}\right]$ (C) [-2, -1] (D) $\left[-\frac{3}{2},-1\right]$ **Q9.** The value of the integral $\int_{\frac{1}{2}}^{2} \frac{\tan^{-1} x}{x} dx$ is equal to (A) $\pi log_e 2$ (B) $\frac{\pi}{2}\log_e 2$ (C) $\frac{\pi}{4}\log_e 2$ (D) $\frac{1}{2}\log_{e} 2$ **Q10.** Let $S = \left\{w_1, w_2,\right\}$ be the sample space associated to a random experiment. Let $P\left(w_n\right) = \frac{P\left(w_{n-1}\right)}{2}, n \geq 2$. Let $A = \left\{2k + 3\ell : k, \ell \in N\right\}$ and $B = \left\{w_n : n \in A\right\}$. Then $P\left(B\right)$ is equal to (A) $\frac{1}{32}$ (B) $\frac{3}{64}$ (C) $\frac{1}{16}$ (D) $\frac{3}{32}$ **Q11.** Let y = y(x) be the solution of the differential equation $x \log_e x \frac{dy}{dx} + y = x^2 \log_e x, (x > 1)$. If y(2) = 2, then y(e) is equal to (A) $\frac{1+e^2}{4}$ (B) $\frac{1+e^2}{2}$ (C) $\frac{2+e^2}{2}$ (D) $\frac{4 + e^2}{4}$ Q12. Let f and g be twice differentiable functions on R such that $$f''(x) = g''(x) + 6x$$ $$f'(1) = 4g'(1) - 3 = 9$$ $$f(2) = 3g(2) = 12$$ Then which of the following is NOT true? | | (A) There exists $x_0 \in (1,3/2)$ such that $f(x_0) = g(x_0)$ | | | | | | |--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--| | | (B) $g(-2)-f(-2)=20$ | | | | | | | | (C) $ f'(x)-g'(x) < 6 \Rightarrow -1 < x < 1$ | | | | | | | | (D) If $-1 < x < 2$, then $ f(x) - g(x) < 8$ | | | | | | | Q13. | The letters of the word OUGHT are written in a in a dictionary, in a series. Then the serial numb (A) 86 (C) 79 | Il possible ways and these words are arranged as
per of the word TOUGH is
(B) 89
(D) 84 | | | | | | Q14. The statement $B \Rightarrow ((\sim A) \lor B)$ is equivalent to : | | | | | | | | | $(A) B \Rightarrow ((\sim A) \Rightarrow B)$ | (B) $A \Rightarrow ((\sim A) \Rightarrow B)$ | | | | | | | (C) $A \Rightarrow (A \Leftrightarrow B)$ | (D) $B \Rightarrow (A \Rightarrow B)$ | | | | | | Q15. | | ment joining the points $A(a,-2,4)$ and $B(2,b,-3)$ of the point C from the origin is $\sqrt{5}$. If $ab<0$ and to | | | | | | | (A) $\frac{17}{3}$ | (B) $\frac{97}{3}$ | | | | | | | 3 | 0 | | | | | | | (C) $\frac{16}{3}$ | (D) $\frac{73}{3}$ | | | | | | Q16. | If $\vec{a} = \hat{i} + 2\hat{k}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = 7\hat{i} - 3\hat{j} + 4\hat{k}$, $\vec{r} \times \vec{b} + \vec{b}$ (A) 30 (C) 36 | $\times \vec{c} = \vec{0}$ and $\vec{r} \cdot \vec{a} = 0$. Then $\vec{r} \cdot \vec{c}$ is equal to (B) 32 (D) 34 | | | | | | Q17. | distance of the point P from the plane $z = a$ is: | $\frac{y+2}{3} = \frac{z-3}{1}$ intersect at the point P, then the | | | | | | | (A) 16
(C) 10 | (B) 22
(D) 28 | | | | | | Q18. | Let $\vec{a} = 4\hat{i} + 3\hat{j}$ and $\vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}$. If \vec{c} is a vertex | ector such that $\vec{c} \cdot (\vec{a} \times \vec{b}) + 25 = 0$, $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4$ | | | | | | | and projection of \vec{c} on \vec{a} is 1, then the projection of \vec{c} on \vec{b} equals | | | | | | | | (A) $\frac{5}{\sqrt{2}}$ | (B) $\frac{1}{\sqrt{2}}$ | | | | | | | | (D) $\frac{1}{5}$ | | | | | | | (C) $\frac{3}{\sqrt{2}}$ | (D) - 5 | | | | | | Q19. | The number of 3 digit numbers, that are divisible (A) 400 | e by either 3 or 4 but not divisible by 48, is (B) 472 | | | | | | | (C) 432 | (D) 507 | | | | | | | | | | | | | The area of the region $A = \left\{ \left(x, y \right) : \left| \cos x - \sin x \right| \le y \le \sin x, 0 \le x \le \frac{\pi}{2} \right\}$ is Q20. (A) $$\frac{3}{\sqrt{5}} - \frac{3}{\sqrt{2}} + 1$$ (B) $$1 - \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{5}}$$ (D) $\sqrt{5} - 2\sqrt{2} + 1$ (C) $$\sqrt{5} + 2\sqrt{2} - 4.5$$ (D) $$\sqrt{5} - 2\sqrt{2} + 1$$ #### SECTION - B #### (Numerical Answer Type) This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. - Q1. Let $\alpha=8-14i$, $A=\left\{z\in c: \frac{\alpha z-\overline{\alpha}\overline{z}}{z^2-\left(\overline{z}\right)^2-112i}=1\right\}$ and $B=\left\{z\in C: \left|z+3i\right|=4\right\}$. Then $\sum_{z\in A\cap B}\left(\operatorname{Re}z-\operatorname{Im}z\right)$ is equal to........ - Q2. A triangle is formed by the tangents at the point (2, 2) on the curves $y^2 = 2x$ and $x^2 + y^2 = 4x$ and the line x + y + 2 = 0. If r is the radius of its circumcircle, then r^2 is equal to....... - Q3. Let A be a symmetric matrix such that |A| = 2 and $\begin{bmatrix} 2 & 1 \\ 3 & \frac{3}{2} \end{bmatrix} A = \begin{bmatrix} 1 & 2 \\ \alpha & \beta \end{bmatrix}$. If the sum of the diagonal elements of A is s, then $\frac{\beta s}{\alpha^2}$ is equal to...... - Q4. Let $\{a_k\}$ and $\{b_k\}$, $k \in N$, be two G.P.s with common ratios r_1 and r_2 respectively such that $a_1 = b_1 = 4$ and $r_1 < r_2$. Let $c_k = a_k + b_k$, $k \in N$. If $c_2 = 5$ and $c_3 = \frac{13}{4}$ then $\sum_{k=1}^{\infty} c_k \left(12a_6 + 8b_4\right)$ is equal to...... - Q5. The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is...... - **Q6.** A circle with centre (2,3) and radius 4 intersects the line x + y = 3 at the points P and Q. If the tangents at P and Q intersect at the point $S(\alpha,\beta)$, then $4\alpha 7\beta$ is equal to....... - Q7. Let $X = \{11,12,13,...,40,41\}$ and $Y = \{61,62,63,...,90,91\}$ be the two sets of observations. If \overline{x} and \overline{y} are their respective means and σ^2 is the variance of all the observations in $X \cup Y$, then $|\overline{x} + \overline{y} \sigma^2|$ is equal to....... - Q8. If the equation of the normal to the curve $y = \frac{x-a}{(x+b)(x-2)}$ at the point (1,-3) is x-4y=13, then the value of a+b is equal to...... - Q9. Let $\alpha_1, \alpha_2, ..., \alpha_7$ be the roots of the equation $x^7 + 3x^5 13x^3 15x = 0$ and $\left|\alpha_1\right| \ge \left|\alpha_2\right| \ge \ge \left|\alpha_7\right|$. Then $\alpha_1\alpha_2 \alpha_3\alpha_4 + \alpha_5\alpha_6$ is equal to....... - **Q10.** Let $a_1 = b_1 = 1$ and $a_n = a_{n-1} + (n-1), b_n = b_{n-1} + a_{n-1}, \forall n \ge 2$. If $S = \sum_{n=1}^{10} \frac{b_n}{2^n}$ and $T = \sum_{n=1}^8 \frac{n}{2^{n-1}}$, these $2^7 \left(2S T\right)$ is equal to....... # **Keys to JEE Main 2024 Mock Test 8** # PART - A (PHYSICS) D В ## SECTION - A 1. С 2. В 3. Α 4. 6. 7. С 5. 8. В 9. 11. В 10. 12. 13. 14. 15. 16. С В 17. 18. 20. 19. В ### SECTION - B 2. 3872 3. 5 40 7 5. 40 6. 25 7. 30 8. 12 10. 800 # PART - B (CHEMISTRY) ## SECTION - A 3. Α 1. Α 2. 4. Α 5. D 6. С 7. Α 8. Α 9. 10. 11. 12. Α 13. С 14. 15. 16. D С 17. 18 20. ## **SECTION - B** 19. 1. 4 2. 2 3. 15 4. 3 6. 7. 8. 270 36 200 9. 10. 17 9. 41 # PART - C (MATHEMATICS) # SECTION - A 3. 1. 2. С D Α В 4. 5. 7. В 6. С В 8. D 9. В 10. В 11. D 12. D 13. 14. ABD 15. 16. В Α D 17. D 18 Α 19. С 20. D # SECTION - B 3. 1. 14 2. 10 5 4. 9 5. 3000 6. 11 7. 603 8. 4 461 10. 9. 9