JEE Main 2024 Mock Test 10

- Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

Important Instructions:

1. The test is of 3 hours duration.
2. This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300.
3. This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
4. Section - A : Attempt all questions.
5. Section - B : Do any 5 questions out of 10 Questions.
6. Section-A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
7. Section-B (1 - 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

PART - A (PHYSICS)

SECTION - A

(One Options Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. Given below are two statements :
Statement I : For transmitting a signal, size of antenna (ℓ) should be comparable to wavelength of signal (at least $\ell=\frac{\lambda}{4}$ in dimension)
Statement II : In amplitude modulation, amplitude of carrier wave remains constant (uncharged).
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Statement I is incorrect but Statement II is correct
(B) Both Statement I and Statement II are incorrect
(C) Statement I is correct but Statement II is incorrect
(D) Both Statement I and Statement II are correct

Q2. Heat energy of 735 J is given to a diatomic gas allowing the gas to expand at constant pressure. Each gas molecule rotates around an internal axis but do not oscillate. The increase in the internal energy of the gas will be :
(A) 525 J
(B) 735 J
(C) 572 J
(D) 441 J

Q3. The number of turns of the a moving coil galvanometer is increased in order to increase current sensitivity by 50%. The percentage change in voltage sensitivity of the galvanometer will be :
(A) 100%
(B) 50%
(C) 75%
(D) 0%

Q4. A body weight W , is projected vertically upwards from earth's surface to each a height above the earth which is equal to nine times the radius of earth. The weight of the body at that height will be
(A) $\frac{W}{91}$
(B) $\frac{\mathrm{W}}{100}$
(C) $\frac{W}{9}$
(D) $\frac{W}{3}$

Q5. An alternative voltage $\mathrm{V}=260 \sin (628 \mathrm{t})$ is connected across a pure inductor of 5 mH . Inductive reactance in the circuit is :
(A) 0.5Ω
(B) 6.28Ω
(C) 0.318Ω
(D) 3.14Ω

Q6. Match List I with List II

List I

A. Angular momentum
B. Torque
C. Stress
D. Pressure gradient

List II
I. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
II. $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
III. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
IV. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below :
(A) A - IV, B - II, C - I, D - III
(B) $A-I, B-I V, C-I I I, D-I I$
(C) A - II, B - III, C - IV, D - I
(D) $\mathrm{A}-\mathrm{III}, \mathrm{B}-\mathrm{I}, \mathrm{C}-\mathrm{IV}, \mathrm{D}-\mathrm{II}$

Q7. Given below are statements :
Statement I : In a typical transistor, all three regions emitter, base collector have same doping level.
Statement II : In a transistor, collectors is the thickest and base is the thinnest segment.
In the light of the above statements, choose the most appropriate answer from the options given below :
(A) Both Statement I and Statement II are incorrect
(B) Statement I is incorrect but Statement II is correct
(C) Both Statement I and Statement II are correct
(D) Statement I is correct but Statement II is incorrect

Q8. A body is moving with constant speed, in a circle of radius 10 m . The body completes one revolution in 4 s . At the end of 3rd second, the displacement of body (in m) from its starting point is:
(A) $10 \sqrt{2}$
(B) 5π
(C) 15π
(D) 30

Q9. Under the same load, wire A having length 5.0 m and cross section $2.5 \times 10^{-5} \mathrm{~m}^{2}$ stretches uniformly by the same amount as another wire B of length 6.0 m and a cross section of $3.0 \times 10^{-5} \mathrm{~m}^{2}$ stretches. The ratio of the Young's modulus of wire A to that of wire B will be :
(A) $1: 1$
(B) $1: 4$
(C) $1: 10$
(D) $1: 2$

Q10. A microscope is focused on an object at the bottom of a bucket. If liquid with refractive index $\frac{5}{3}$ is poured inside the bucket, then microscope have to be raised by 30 cm to focus the object again The height of the liquid in the bucket is :
(A) 75 cm
(B) 12 cm
(C) 18 cm
(D) 50 cm

Q11. If the metals A and B are exposed to radiation of wavelength 350 nm . The work functions of metals A and B are 4.8 eV and 2.2 eV . Then choose the correct option.
(A) Both metals A and B will emit photo-electrons
(B) Metal A will not emit photo-electrons
(C) Both metals A and B will not emit photo-electrons
(D) Metal B will not emit photo-electrons

Q12. A body of mass 10 kg is moving with an initial speed of $20 \mathrm{~m} / \mathrm{s}$. The body stops after 5 s due to friction between body and the floor. The value of the coefficient of friction is: (Take acceleration due to gravity $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(A) 0.2
(B) 0.5
(C) 0.4
(D) 0.3

Q13. Match List I with List II

List I

A. Microwaves
B. UV rays
C. Infra-red light
D. X-ray

List II

I. Physiotherapy
II. Treatment of cancer
III. Lasik eye surgery
IV. Aircraft navigation

Choose the correct answer from the options given below :
(A) $\mathrm{A}-\mathrm{II}, \mathrm{B}-\mathrm{IV}, \mathrm{C}-\mathrm{III}, \mathrm{D}-\mathrm{I}$
(B) $\mathrm{A}-\mathrm{IV}, \mathrm{B}-\mathrm{III}, \mathrm{C}-\mathrm{I}, \mathrm{D}-\mathrm{II}$
(C) A - III, B - II, C - I, D - IV
(D) $A-I V, B-I, C-I I, D-$ III

Q14. A long conducting wire having a current I following through it is, bent into a circular of N turns. Then it is bent into a circular coil of n turns. The magnetic field is calculated at the centre of coils on both the case. The ratio of the magnetic field in first case to that of second case is :
(A) $n^{2}: N^{2}$
(B) $\mathrm{N}^{2}: \mathrm{n}^{2}$
(C) $n: N$
(D) $\mathrm{N}: \mathrm{n}$

Q15. For a solid rod, the Young's modulus of elasticity is $3.2 \times 10^{11} \mathrm{Nm}^{-2}$ and density is $8 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. The velocity of longitudinal wave in the rod will be.
(A) $3.65 \times 10^{3} \mathrm{~ms}^{-1}$
(B) $6.32 \times 10^{3} \mathrm{~ms}^{-1}$
(C) $145.75 \times 10^{3} \mathrm{~ms}^{-1}$
(D) $18.96 \times 10^{3} \mathrm{~ms}^{-1}$

Q16. The H amount of thermal energy is developed by a resistor in 10 s when a current of 4 A is passed through it. If the current is increased to 16A. the thermal energy developed by the resistor in 10s will be:
(A) $\frac{\mathrm{H}}{4}$
(B) 4 H
(C) H
(D) 16 H

Q17. A stone of mass 1 kg is tied to end of a massless string of length 1 m . If the breaking tension of the string is 400 N , then maximum linear velocity, the stone can have without breaking the string, while rotating in horizontal plane, is :
(A) $20 \mathrm{~ms}^{-1}$
(B) $400 \mathrm{~ms}^{-1}$
(C) $40 \mathrm{~ms}^{-1}$
(D) $10 \mathrm{~ms}^{-1}$

Q18. The radius of electron's second stationary orbit in Bohar's stom is R. The radius of $3^{\text {rd }}$ orbit will be
(A) $\frac{R}{3}$
(B) $9 R$
(C) $3 R$
(D) 2.25 R

Q19. Considering a group of positive charges, which of the following statements is correct?
(A) Net potential of the system at a point can be zero but net electric field can't be zero at the point.
(B) Both the net potential and the net electric field cannot be zero at a point.
(C) Net potential of the system cannot be zero at a point but net electric field can be zero at the point.
(D) Both the net potential and the net field can be zero at a point.

Q20. A hypothetical gas expands adiabatically such that its volume changes form 08 liters to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then ratio of $\frac{C_{p}}{C_{v}}$ will be.
(A) $\frac{3}{1}$
(B) $\frac{4}{3}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. Two bodies are projected from ground with same speeds $40 \mathrm{~ms}^{-1}$ at two different angles with respect to horizontal. The bodies were found to have same range. If one of the body projected at an angle of 60°, with horizontal then sun of the maximum heights, attained by the two projectiles, is \qquad m. (Given $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Q2. A water heater pf power 2000W is used to heat water. The specific heat capacity of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The efficiency of heater is 70%. Time required to heat 2 kg of water from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ is \qquad s.
(Assume that the specific heat capacity of water remains constant over the temperature range of the water).

Q3. A ball is dropped from a height of 20 m . If the coefficient of restitution for the collision between ball and floor is 0.5 , after hitting the floor, the ball rebounds to a heights to a height of \qquad m.

Q4. Two discs of same and different radii are made of different materials such that their thicknesses are 1 cm and 0.5 cm respectively. The densities of materials are in the ratio $3: 5$. The moment of inertia of these disc respectively about their diameters will be in the ratio of $\frac{x}{6}$. The value of x is
\qquad .

Q5. If the binding energy of ground state electron in a hydrogen atom is 13.6 eV , then, the energy required to remove the electron from the the second excited state of Li^{2+} will be : $\mathrm{x} \times 10^{-1} \mathrm{eV}$. The value of x is \qquad -.

Q6. The displacement equations of two interfering waves are given by $\mathrm{y}_{1}=10 \sin \left(\omega \mathrm{t}+\frac{\pi}{3}\right) \mathrm{cm}$, $1 / 2=5[\sin \omega \mathrm{t}+\sqrt{3} \cos \omega \mathrm{t}] \mathrm{cm}$ respectively. The amplitude of the resultant wave is \qquad cm .

Q7. A series LCR circuit consists of $R=80 \Omega, X_{L}=100 \Omega$ and $X_{C}=40 \Omega$. The input voltage is $2500 \cos (100 \pi t) V$. The amplitude of current, in the circuit, is \qquad A.

Q8. Two parallel plate capacitors C_{1} and C_{2} each having capacitance of $10 \mu \mathrm{~F}$ are individually charged by a 100VD.C. source. Capacitor C_{1} is kept connected to the source and a dielectric slab is inserted between it plates. Capacitor C_{2} is disconnected from the source and then a dielectric slab is inserted in it. Afterwards the capacitor C_{1} is also disconnected from the source and the two capacitors are finally connected in parallel combination. The common potential of the combination will be \qquad V.
(Assuming Dielectric constant $=10$)

Q9. For the given circuit, in the steady state, $\left|V_{B}-V_{D}\right|=$ \qquad V.

Q10. Two light waves wavelengths 800 and 600 nm are used in Young's double slit experiment to obtain interference fringes on a screen placed 7 m away from plane of slits. If the two slits are separated by 0.35 mm , then shortest distance from the central bright maximum to the where the bright fringes of the two wavelengths coincide will be \qquad mm.

PART - B (CHEMISTRY)
 SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. In the following halogenated organic compounds the one with maximum number of chlorine atoms in its structure is:
(A) Chloral
(B) Gammaxene
(C) Chloropicrin
(D) Freon-12

Q2. Which one of the following statements is incorrect?
(A) Boron and Indium can be purified by zone refining method.
(B) van Arkel method is used to purify tungsten.
(C) Cast iron is obtained by melting pig iron with scrap iron and coke using hot air blast.
(D) The malleable iron is prepared from cast iron by oxidising impurities in a reverberatory furnace.

Q3. In Dumas method for the estimation of N_{2}. the sample is heated with copper oxide and the gas evolved is passed over:
(A) Ni
(B) Pd
(C) Copper gauze
(D) Copper oxide

Q4. Given below are two statements, one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The first ionization enthalpy of 3d series elements is more than that of group 2 metals
Reason (R): In 3d series of elements successive filling of d- orbitals takes place. In the light of the above statements, choose the correct answer from the option given below:
(A) (A) is true but (R) is false
(B) (A) is false but (R) is true
(C) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(D) Both (A) and (R) are true and (R) is the correct explanation of (A)

Q5. Which of the following compounds are not used as disinfectants?
A. Chloroxylenol
B. Bithional
C. Veronal
D. Prontosil
E. Terpineol

Choose the correct answer from the options given below :
(A) A, B
(B) A, B, E
(C) C, D
(D) B, D, E

Q6. A hydrocarbon ' X ' with formula $\mathrm{C}_{6} \mathrm{H}_{8}$ uses two moles of H_{2} on catalytic hydrogenation of its one mole. on ozonolysis. ' X ' yield two moles of methane dicarbaldhyde. The hydrocarbon ' X ' is :
(A) hexa-1, 3, 5-triene
(B) cyclohexa-1, 3-diene
(C) 1-methylcyclopenta-1, 4-diene
(D) cyclohexa-1, 4-diene

Q7. Cyclohexylamine when treated with nitrous acid yields (P). On treating (P) with PCC results in (Q). When (Q) is heated with dil. NaOH we get (R) The final product (R) is:
(A)

(B)

(C)

(D)

Q8. The Lewis acid character of boron tri halides follows the order:
(A) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}>\mathrm{Bl}_{3}$
(B) $\mathrm{Bl}_{3}>\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
(C) $\mathrm{BBr}_{3}>\mathrm{BI}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
(D) $\mathrm{BCl}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}>\mathrm{Bl}_{3}$

Q9. The normal rain water is slightly acidic and its pH value is 5.6 because of which one of the following?
(A) $2 \mathrm{SO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
(B) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
(C) $4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}$
(D) $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$

Q10. Given below are two statements:
Statement I: Upon heating a borax bead dipped in cupric sulphate in a luminous flame, the colour of the bead becomes green
Statement II: The green colour observed is due to the formation of copper (I) metaborate In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Statement I is false but Statement II is true
(B) Both Statement I and Statement II are false
(C) Both Statement I and Statement II are true
(D) Statement I is true but Statement II is false

Q11. Given below are two statements:
Statement I: $\mathrm{H}_{2} \mathrm{O}_{2}$ is used in the synthesis of Cephalosporin.
Statement II: $\mathrm{H}_{2} \mathrm{O}_{2}$ is used for the restoration of aerobic conditions to sewage wastes.
In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are correct
(B) Statement I is incorrect but Statement II is correct
(C) Statement I is correct but Statement II is incorrect
(D) Both Statement I and Statement II are incorrect.

Q12. When a hydrocarbon A undergoes complete combustion it requires 11 equivalents of oxygen and produces 4 equivalents of water. What is the molecular formula of A ?
(A) $\mathrm{C}_{5} \mathrm{H}_{8}$
(B) $\mathrm{C}_{11} \mathrm{H}_{4}$
(C) $\mathrm{C}_{11} \mathrm{H}_{8}$
(D) $\mathrm{C}_{9} \mathrm{H}_{8}$

Q13. Evaluate the following statements for their correctness.
A. The elevation in boiling point temperature of water will be same for 0.1 M NaCl and 0.1 M urea.
B. Azeotropic mixture boil without change in their composition.
C. Osmosis always takes place from hypertonic to hypotonic solution.
D. The density of $32 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution having molarity 4.09 M is approximately $1.26 \mathrm{~g} \mathrm{~mL}^{-1}$.
E. A negatively charged sol is obtained when KI solution is added to silver nitrate solution Choose the correct answer from the options given below:
(A) B and D only
(B) A, B and D only
(C) A and C only
(D) B, D and E only

Q14. Arrange the following orbitals in decreasing order of energy
A. $n=3, l=0, m=0$
B. $n=4, l=0, m=0$
C. $n=3, l=1, m=0$
D. $n=3, I=2, m=1$

The correct option for the order is :
(A) D $>\mathrm{B}>\mathrm{A}>\mathrm{C}$
(B) $\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}$
(C) A $>$ C $>$ B $>$ D
(D) D $>$ B $>$ C $>$ A

Q15. Incorrect statement for the use of indicators in acid-base titration is:
(A) Phenolphthalein is a suitable indicator for a weak acid vs strong base titration.
(B) Phenolphthalein may be used for a strong acid vs strong base titration.
(C) Methyl orange may be used for a weak acid vs weak base titration.
(D) Methyl orange is a suitable indicator for a strong acid vs weak base titration.

Q16. Which of the following elements have half- filled f-orbitals in their ground state?
(Given: atomic number $\mathrm{Sm}=62 ; \mathrm{Eu}=63 ; \mathrm{Tb}=65 ; \mathrm{Gd}=64, \mathrm{Pm}=61$)
A. Sm
B. Eu
C. Tb
D. Gd
E. Pm

Choose the correct answer from the options given below :
(A) C and D only
(B) A and B only
(C) B and D only
(D) A and E only

Q17. The element playing significant role in neuromuscular function and inter neuronal transmission is:
(A) Mg
(B) Li
(C) Ca
(D) Be

Q18. Match List I with List II

List-I		List-II	
A.	Physisorption	I.	Single Layer Adsorption
B.	Chemisorption	II.	20-4OKJ mol
C.	$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}(\mathrm{s})} \mathrm{2NH}_{3}(\mathrm{~g})$	III.	Chromatography
D.	Analytical Application or Adsorption	IV.	Heterogeneous catalysis

Choose the correct answer from the options given below:
(A) A- IV, B-II, C-III, D-I
(B) A-II, B-I, C-IV, D-III
(C) A-III, B-IV, C-I, D-II
(D) A-II, B-III, C-I, D-IV

Q19. An organic compound $[A]\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\right)$, shows optical activity and gives N_{2} gas on treatment with HNO_{2}. The compound [A] reacts with $\mathrm{PhSO}_{2} \mathrm{Cl}$ producing a compound which is soluble in KOH . The structure of A is:
(A)

(B)

(C)

(D)

Q20. Compound $\mathrm{A}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$. given a tetraacetate with $\mathrm{Ac}_{2} \mathrm{O}$ and oxidation of A with $\mathrm{Br}_{2}-\mathrm{H}_{2} \mathrm{O}$ gives an acid, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{6}$. Reduction of A with HI gives isopentane. The possible structure of A is:
(A)

(B)

(C)

(D)

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. Assume carbon burns according to following equation:
$2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}(\mathrm{g})$
When 12 g carbon is burnt in 48 g of oxygen, the volume of carbon monoxide produced is $\times 10^{-1} \mathrm{~L}$ at STP [Nearest integer]
[Given: Assume CO as ideal gas, Mass of C is $12 \mathrm{~g} \mathrm{~mol}^{-1}$, Mass of O is $16 \mathrm{~g} \mathrm{~mol}^{-1}$ and molar volume of an ideal gas at STP is $22.7 \mathrm{~L} \mathrm{~mol}^{-1}$

Q2. Amongst the following, the number of species having the linear shape is \qquad .
$\mathrm{XeF}_{2}, \mathrm{l}_{3}^{+}, \mathrm{C}_{3} \mathrm{O}_{2}, \mathrm{l}_{3}^{-}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{BeCl}_{2}$ and $\mathrm{BCl}_{2}^{\Theta}$
Q3. The rate constant for a first order reaction is $20 \mathrm{~min}^{-1}$. The time required for the initial concentration of the reactant to reduce to its $\frac{1}{32}$ level is___ $\times 10^{-2} \mathrm{~min}$.
(Nearest integer)
(Given: $\ln 10=2.303$

$$
\log 2=0.3010)
$$

Q4. Enthalpies of formation of $\mathrm{CCl}_{4}(\mathrm{~g}) \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ are $-105,-242,-394$ and -92 kJ mol^{-1} respectively. The magnitude of enthalpy of the reaction given below is \qquad kJ mol^{-1} (nearest integer)
$\mathrm{CCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g})$
Q5. The resistivity of a 0.8 M solution of an electrolyte is $5 \times 10^{-3} \Omega \mathrm{~cm}$. Its molar conductivity is $\longrightarrow \times 10^{4} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. (Nearest integer)

Q6. At 298 K , the solubility of silver chloride in water is $1.434 \times 10^{-3} \mathrm{gL}^{-1}$. The value of $-\log \mathrm{K}_{\text {sp }}$ for silver chloride is \qquad .
(Given mass of Ag is $107.9 \mathrm{~g} \mathrm{~mol}^{-1}$ and mass of Cl is $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
Q7. The number of alkali metal(s), from Li, K Cs, Rb having ionization enthalpy greater than 400kJ mol^{-1} and forming stable super oxide is \qquad .

Q8. A sample of a metal oxide has formula $\mathrm{M}_{0.83} \mathrm{O}_{1.00}$. The metal M can exist in two oxidation states +2 and +3 , In the sample of $\mathrm{M}_{0.83} \mathrm{O}_{1.00}$, the percentage of metal ions existing in +2 oxidation state is \qquad \% (nearest integer)

Q9. If the CFSE of $\left.\left[\mathrm{TiH}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is $-96.0 \mathrm{~kJ} / \mathrm{mol}$, this complex will absorb maximum at wavelength
\qquad nm. (nearest integer)
Assume Plank's constant $(\mathrm{h})=6.4 \times 10^{-34} \mathrm{Js}$, speed of light (c) $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and Avogadro's constatn $\left(N_{A}\right)=6 \times 10^{23} / \mathrm{mol}$.

Q10. The number of molecules which gives haloform test among the following molecules is \qquad .

PART - C (MATHEMATICS)
 SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. If $\phi(x)=\frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x}\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$, then $\phi^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
(A) $\frac{8}{\sqrt{\pi}}$
(B) $\frac{4}{6+\sqrt{\pi}}$
(C) $\frac{4}{6-\sqrt{\pi}}$
(D) $\frac{8}{6+\sqrt{\pi}}$

Q2. Let the plane $P: 8 x+a_{1} y+a_{2} z+12=0$ be parallel to the line $L: \frac{x+2}{2}=\frac{y-3}{3}=\frac{z+4}{5}$. If the intercept of P on the y-axis is 1 , then the distance between P and L is :
(A) $\sqrt{\frac{7}{2}}$
(B) $\sqrt{\frac{2}{7}}$
(C) $\frac{6}{\sqrt{14}}$
(D) $\sqrt{14}$

Q3. $\lim _{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^{6}+(\sqrt{3 x+1}-\sqrt{3 x-1})^{6}}{\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}}$
(A) is equal to 27
(B) is equal to $\frac{27}{2}$
(C) does not exist
(D) is equal to 9

Q4. Let $f: R-\{2,6\} \rightarrow R$ be real valued function defined as $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$. Then range of f is
(A) $\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)$
(B) $\left(-\infty,-\frac{21}{4}\right) \cup(0, \infty)$
(C) $\left(-\infty,-\frac{21}{4}\right] \cup[1, \infty)$
(D) $\left(-\infty,-\frac{21}{4}\right] \cup\left[\frac{21}{4}, \infty\right)$

Q5. Let $\alpha>0$. If $\int_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x=\frac{16+20 \sqrt{2}}{15}$, then α is equal to :
(A) 2
(B) 4
(C) $\sqrt{2}$
(D) $2 \sqrt{2}$

Q6. Let H be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is \qquad
(A) 3
(B) $\frac{5}{2}$
(C) 2
(D) $\frac{3}{2}$

Q7. The foot of perpendicular from the origin O to a plane P which meets the co-ordinate axes at the points A, B, C is $(2, a, 4), a \in N$. If the volume of the tetrahedron OABC is 144 unit 3, then Which of the following points is NOT on P?
(A) $(3,0,4)$
(B) $(0,4,4)$
(C) $(0,6,3)$
(D) $(2,2,4)$

Q8. The number of values of $r \in\{p, q, \sim p, \sim q\}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology is:
(A) 2
(B) 1
(C) 3
(D) 4

Q9. Let the mean and standard deviation of marks of class A of 100 students be respectively 40 and $\alpha(>0)$, and the mean and standard deviation of marks of class B of n students be respectively 55 and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+n$ students are respectively 50 and 350 , then the sum of variances of classes A and B is :
(A) 500
(B) 650
(C) 900
(D) 450

Q10. Let $a_{1}, a_{2}, a_{3} \ldots$. be an A.P. If $a_{7}=3$, the product $a_{1} a_{4}$ is minimum and the sum of its first n terms is zero, then $n!-4 a_{n(n+2)}$ is equal to :
(A) $\frac{381}{4}$
(B) 9
(C) $\frac{33}{4}$
(D) 24

Q11. Among the relations $S=\left\{(a, b): a, b \in R-\{0\}, 2+\frac{a}{b}>0\right\}$ and $T=\left\{(a, b): a, b \in R, a^{2}-b^{2} \in Z\right\}$,
(A) both S and T are symmetric
(B) neither S nor T is transitive
(C) S is transitive but T is not
(D) T is symmetric but S is not

Q12. The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :
(A) $\sqrt{2 i}\left(\cos \frac{5 \pi}{12}-\mathrm{i} \sin \frac{5 \pi}{12}\right)$
(B) $\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}$
(C) $\sqrt{2}\left(\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right)$
(D) $\sqrt{2}\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right)$

Q13. If a point $P(\alpha, \beta, \gamma)$ satisfying
$(\alpha \beta \gamma)\left(\begin{array}{lll}2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to :
(A) -1
(B) 11
(C) $\frac{11}{5}$
(D) $\frac{5}{4}$

Q14. The set of all values of a^{2} for which the line $x+y=0$ bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x^{2}+2 y^{2}-(1+a) x-(1-a) y=0$, is equal to :
(A) $(8, \infty)$
(B) $(0,4]$
(C) $(4, \infty)$
(D) $(2,12]$

Q15. Let P be the plane, passing through the point $(1,-1,-5)$ and perpendicular to the line joining the points $(4,1,-3)$ and $(2,4,3)$. Then the distance of P from the point $(3,-2,2)$ is
(A) 7
(B) 4
(C) 6
(D) 5

Q16. Let $y=y(x)$ be the solution of the differential equation $\left(3 y^{2}-5 x^{2}\right) y d x+2 x\left(x^{2}-y^{2}\right) d y=0$ such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
(A) $32 \sqrt{2}$
(B) 32
(C) 64
(D) $16 \sqrt{2}$

Q17. Let : $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be there vectors. If \vec{r} is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^{2}$ is equal to
(A) 339
(B) 560
(C) 449
(D) 336

Q18. Let $(\mathrm{a}, \mathrm{b}) \subset(0,2 \pi)$ be the largest interval for which $\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>0, \theta \in(0,2 \pi)$, holds. If $\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)=0$ and $\alpha-\beta=b-a$, then α is equal to :
(A) $\frac{\pi}{8}$
(B) $\frac{\pi}{16}$
(C) $\frac{\pi}{48}$
(D) $\frac{\pi}{12}$

Q19. The absolute minimum value, of the function $f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$, where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$ is :
(A) $\frac{3}{2}$
(B) $\frac{3}{4}$
(C) $\frac{5}{4}$
(D) $\frac{1}{4}$

Q20. The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^{x}+1=0, x \in R$ has :
(A) no solution
(B) four solutions two of which are negative
(C) two solutions and both are negative
(D) two solutions and only one of them is negative

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2$ and $2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a})$. If the angle between \vec{b} and \vec{c} is $\frac{2 \pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2}$ is equal to \qquad

Q2. Let A be the event that the absolute difference between two randomly choosen real numbers in the sample space $[0,60]$ is less than or equal to a. If $P(A)=\frac{11}{36}$, then a is equal to \qquad

Q3. If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=11: 21$, then $n^{2}+n+15$ is equal to :

Q4. If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{\ell}}\right)^{9}$ is -84 and the coefficient of $x^{-3 \ell}$ is $2^{\alpha} \beta$, where $\beta<0$ is an odd number, then $|\alpha \ell-\beta|$ is equal to \qquad

Q5. Let A be a $n x n$ matrix such that $|A|=2$. If the determinant of the matrix $\operatorname{Adj}\left(2 \cdot \operatorname{Adj}\left(2 A^{-1}\right)\right)$. is 2^{84}, then n is equal to.......

Q6. Let S be the set of all $a \in N$ such that the area of the triangle formed by the tangent at the point $P(b, c), b, c \in N$, on the parabola $y^{2}=2 a x$ and the lines $x=b, y=0$ is 16 unit 2, then $\sum_{a \in S} a$ is equal to \qquad

Q7. The sum $1^{2}-2 \cdot 3^{2}+3 \cdot 5^{2}-4 \cdot 7^{2}+5 \cdot 9^{2}$ \qquad $+15 \cdot 29^{2}$ is \qquad

Q8. The coefficient of x^{-6}, in the expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$, is. \qquad

Q9. Let the area of the region $\left\{(x, y):|2 x-1| \leq y \leq\left|x^{2}-x\right|, 0 \leq x \leq 1\right\}$ be A. Then $(6 A+11)^{2}$ is equal to......

Q10. Let $A=\left[a_{i j}\right], a_{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$. The number of matrices A such that the sum of all entries is a prime number $p \in(2,13)$ is \qquad

Keys to JEE Main 2024 Mock Test 10 PART - A (PHYSICS)

SECTION - A

1. C
2. D
3. A
4. B
5. A

			SE
1.	80	2.	300
5.	136	6.	20
9.	1	10	48

PART - B (CHEMISTRY)
 SECTION - A

1.	B	2.	B	3.	C	4.	D
5.	C	6.	D	7.	B	8.	B
9.	B	10.	B	11.	A	12.	D
13.	A	14.	D	15.	C	16.	C
17.	C	18	B	19.	B	20.	A

SECTION - B

1.	227	2.	5	3.	17	4.	173
5.	25	6.	10	7.	2	8.	59
9.	480	10.	3				

PART - C (MATHEMATICS) SECTION - A

1.	D	2.	D	3.	A	4.	A
5.	A	6.	C	7.	A	8.	A
9.	A	10.	D	11.	D	12.	C
13.	B	14.	A	15.	D	16.	A
17.	A	18	D	19.	B	20.	C

SECTION - B

1.	3	2.	10	3.	45	4.	98
5.	5	6.	146	7.	6952	8.	5040
9.	125	10.	196				

