Mathematics and Statistics
 Model Set-2

Academic Year: 2020-2021
Marks: 80
Date: April 2021
Duration: 3h

1. The question paper is divided into four sections.
2. Section A: Q. No. 1 contains 8 multiple-choice type of questions carrying two marks each.
3. Section A: Q. No. 2 contains 4 very short answer type of questions carrying One mark each.
4. Section B: Q. No. 3 to Q. No. 14 contains Twelve short answer type of questions carrying Two marks each. (Attempt any Eight).
5. Section C: Q. No. 15 to Q. No. 26 contains Twelve short answer type of questions carrying Three marks each. (Attempt any Eight).
6. Section D: Q.No. 27 to Q. No. 34 contains Five long answer type of questions carrying Four marks each. (Attempt any Five).
7. Use of log table is allowed. Use of calculator is not allowed.
8. Figures to the right indicate full marks.
9. For each MCQ, correct answer must be written along with its alphabet. e.g., (a) / (b) / (c) / (d) Only first attempt will be considered for evaluation.
10. Use of graph paper is not necessary. Only rough sketch of graph is expected:
11. Start answers to each section on a new page.

Q. 1 | Select and write the most appropriate answer from the given alternatives for each sub-question:

1.i A biconditional statement is the conjunction of two \qquad statements

1. Negative
2. Compound
3. Connective
4. Conditional

1.ii

If polar co-ordinates of a point are $\left(\frac{3}{4}, \frac{3 \pi}{4}\right)$, then its Cartesian co-ordinate are \qquad

1. $\left(\frac{3}{4 \sqrt{2}},-\frac{3}{4 \sqrt{2}}\right)$
2. $\left(\frac{3}{4 \sqrt{2}}, \frac{3}{4 \sqrt{2}}\right)$
3. $\left(-\frac{3}{4 \sqrt{2}}, \frac{3}{4 \sqrt{2}}\right)$
4. $\left(-\frac{3}{4 \sqrt{2}},-\frac{3}{4 \sqrt{2}}\right)$
1.iii The feasible region is the set of point which satisfy.
5. The object functions
6. All the given constraints
7. Some of the given constraints
8. Only one constraint
1.iv

Select and write the correct alternative from the given option for the question
Differential equation of the function $c+4 y x=0$ is

1. $x y+\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
2. $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$
3. $\frac{\mathrm{d} y}{\mathrm{~d} x}-4 x y=0$
4. $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+1=0$
1.v

If $x=\cos ^{-1}(t), y=\sqrt{1-t^{2}}$ then $\frac{d y}{d x}=$

1. t
2. -t
3. $\frac{-1}{\mathrm{t}}$
4. $\frac{1}{\mathrm{t}}$
1.vi A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along the ground, away from the wall at the rate of $1.5 \mathrm{~m} / \mathrm{sec}$. The length of the higher point of the when foot of the ladder is 4 m away from the wall decreases at the rate of \qquad
1.1
5. 2
6. 2.5
7. 3
1.vii Select the correct option from the given alternatives:

If I, m, n are direction cosines of a line then $\hat{i}+m \hat{j}+n \hat{k}$ is \qquad

1. null vector
2. the unit vector along the line
3. any vector along the line
4. a vector perpendicular to the line

1.viii Select the correct option from the given alternatives:

The 2 vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represents the two sides $A B$ and $A C$ respectively of a $\triangle A B C$. The length of the median through A is

1. $\frac{\sqrt{34}}{2}$
2. $\frac{\sqrt{48}}{2}$
3. $\sqrt{18}$
4. of the median through A is

Q. 2 | Answer the following questions:

2.i State the truth Value of $x^{2}=25$

Ans. ' $x^{2}=25$ ' is an open sentence.
It is not a statement in logic.

2.ii

Evaluate: $\int_{0}^{1} \frac{x}{\sqrt{\mathrm{e}^{x}-1}} \mathrm{~d} x$
Ans.

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{\sqrt{e^{x}-1}} \mathrm{~d} x=\left[2 \sqrt{\mathrm{e}^{x}-1}\right]_{0}^{1} \quad \ldots . . .\left[\because \int \frac{\mathrm{f}^{\prime}(x)}{\sqrt{\mathrm{f}(x)}} \mathrm{d} x=2 \sqrt{\mathrm{f}(x)}+\mathrm{c}\right] \\
& =2\left(\sqrt{\mathrm{e}^{1} 1}-\sqrt{\mathrm{e}^{0}-1}\right) \\
& =2(\sqrt{\mathrm{e}-1}-\sqrt{1-1}) \\
& =2 \sqrt{\mathrm{e}-1}
\end{aligned}
$$

2.iii An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X ?

Ans. A The urn contains 5 red and 2 black balls. If two balls are drawn from the urn, it contains either 0 or 1 or 2 black balls.

X can take values $0,1,2$.
$\therefore \mathrm{X}=\{0,1,2\}$.
Ans. B X denotes the number of black balls drawn.
Sample space of the experiment is
$S=\{R R, B R, R B, B B\}$
The value of X corresponding to these outcomes are as follows:
$X(R R)=0$
$X(B R)=X(R B)=1$
$X(B B)=2$
\therefore Possible values of X are $\{0,1,2\}$.
2.iv The displacement of a particle at time t is given by $s=2 t^{3}-5 t^{2}+4 t-3$. Find the velocity when $t=2 \mathrm{sec}$

Ans.

$$
\begin{aligned}
& s=2 t^{3}-5 t^{2}+4 t-3 \\
& \therefore v=\frac{d s}{d t} \\
& =6 t^{2}-10 t+4 \\
& v_{(t=2)}=6(2)^{2}-10(2)+4 \\
& =24-20+4 \\
& =8 \text { units } / \mathrm{sec}
\end{aligned}
$$

Q. 3 | Attempt any Eight:

Write the converse and contrapositive of the following statements.
"If a function is differentiable then it is continuous"
Ans. Let p: A function is differentiable,
q : It is continuous.
\therefore The symbolic form of the given statement is $\mathrm{p} \rightarrow \mathrm{q}$.
Converse: $\mathrm{q} \rightarrow \mathrm{p}$
i.e. If a function is continuous then it is differentiable

Contrapositive: $\sim q \rightarrow \sim p$
i.e. If a function is not continuous then it is not differentiable.
Q. 4

With usual notations, prove that $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
Ans.

$$
\begin{aligned}
& \text { Consider L.H.S. }=\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c} \\
& =\frac{1}{a}(\cos A)+\frac{1}{b}(\cos B)+\frac{1}{c}(\cos C) \\
& =\frac{1}{a}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)+\frac{1}{b}\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right)+\frac{1}{c}\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \quad \ldots \ldots . .[\text { [By consine rule] } \\
& =\frac{b^{2}+c^{2}-a^{2}}{2 a b c}+\frac{a^{2}+c^{2}-b^{2}}{2 a b c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c} \\
& =\frac{b^{2}+c^{2}-a^{2}+a^{2}+c^{2}-b^{2}+a^{2}+b^{2}-c^{2}}{2 a b c} \\
& =\frac{a^{2}+b^{2}+c^{2}}{2 a b c} \\
& =\text { R.H.S. } \\
& \therefore \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
\end{aligned}
$$

Q. 5 Find the graphical solution for the system of linear inequation $2 x+y \leq 2, x-y \leq 1$ Ans. To find graphical solution, construct the table as follows:

Inequation Equation	Double intercept form	Points (\mathbf{x}, \mathbf{y})	Region	
$2 \mathrm{x}+\mathrm{y} \leq 2$	$2 \mathrm{x}+\mathrm{y}=2$	$\frac{x}{1}+\frac{y}{2}=1$	$\mathrm{~A}(1,0)$	$2(0)+0 \leq 2$
$\mathrm{~B}(0,2)$	$\therefore 0 \leq 2$			
\therefore origin side				
$\mathrm{x}-\mathrm{y} \leq 1$	$\mathrm{x}-\mathrm{y}=1$	$\frac{x}{1}+\frac{y}{-1}=1$	$\mathrm{~A}(1,0)$	$\mathrm{C}(0,-1)$
$\therefore 0-0 \leq 1$				

The shaded portion represents the graphical solution.

Q. 6 Find the area enclosed between the X -axis and the curve $\mathrm{y}=\sin \mathrm{x}$ for values of x between 0 to 2π

Ans. Let A be the required area.
Consider the equation $\mathrm{y}=\sin \mathrm{x}$.

$$
\begin{aligned}
& \mathrm{A}_{1}=\int_{0}^{a} \sin x \mathrm{~d} x \\
& =[-\cos x]_{0}^{\pi} \\
& =-(\cos \pi-\cos 0) \\
& =-(-1-1) \\
& =2 \\
& \mathrm{~A}_{2}=\int_{\pi}^{2 \pi} \sin x \mathrm{~d} x \\
& =[-\cos x]_{\pi}^{2 \pi} \\
& =-[1-(-1)] \\
& =-2 \\
& \therefore \mathrm{~A}=\mathrm{A}_{1}+\left|\mathrm{A}_{2}\right| \\
& =2+|(-2)| \\
& =4 \text { sq.units } \\
& \text { Q. } 7
\end{aligned}
$$

Find the area of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{64}=1$, using integration
Ans. By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region OPQO.

For the region OPQO, the limits of integration are $x=0$ and $x=6$.
Given equation of the ellipse is $\frac{x^{2}}{36}+\frac{y^{2}}{64}=1$
$\therefore \frac{y^{2}}{64}=1-\frac{x^{2}}{36}$
$\therefore \mathrm{y}^{2}=64\left(1-\frac{x^{2}}{36}\right)$
$\therefore \mathrm{y}^{2}=\frac{64}{36}\left(36-x^{2}\right)$
$\therefore y= \pm \frac{8}{6} \sqrt{36-x^{2}}$
$\therefore \mathrm{y}=\frac{4}{3} \sqrt{36-x^{2}} \ldots \ldots . .[\because$ In first quadrant, $\mathrm{y}>0]$
\therefore Required area $=4$ (area of the region OPQO)
$=4 \int_{0}^{6} y \mathrm{~d} x$
$=4 \int_{0}^{6} \frac{4}{3} \sqrt{36-x^{2}} \mathrm{~d} x$
$=\frac{16}{3}\left[\frac{x}{2} \sqrt{36-x^{2}}+\frac{36}{2} \sin ^{-1}\left(\frac{x}{6}\right)\right]_{0}^{6}$
$=\frac{16}{3}\left[\frac{6}{2} \sqrt{36-36}+\frac{36}{2} \sin ^{-1}(1)-\left\{0+\frac{36}{2} \sin ^{-1}(0)\right\}\right]$
$=\frac{16}{3}\left(0+\frac{36}{2} \cdot \frac{\pi}{2}-0\right)$
$=48 \pi$ sq.units
Q. 8

Let the p.m.f. of r.v. X be $\mathrm{P}(\mathrm{x})={ }^{4} \mathrm{C}_{x}\left(\frac{5}{9}\right)^{x}\left(\frac{4}{9}\right)^{4-x}, \mathrm{x}=0,1,2,3,4$. Find $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$

Ans.
Here $\mathrm{X} \sim \mathrm{B}\left(4, \frac{5}{9}\right)$
i.e., $\mathrm{n}=4, \mathrm{p}=\frac{5}{9}$ and $\mathrm{q}=\frac{4}{9}$
$\therefore \mathrm{E}(\mathrm{X})=\mathrm{np}$
$=4 \times \frac{5}{9}$
$=\frac{20}{9}$
$=2.22$
and
$V(X)=n p q$
$=4 \times \frac{5}{9} \times \frac{4}{9}$
$=\frac{80}{81}$
$=0.9876$
Q. 9 Find the value of h, if the measure of the angle between the lines $3 x^{2}+2 h x y+2 y^{2}=0$ is 45°.

Ans. Given equation of the lines is $3 x^{2}+2 h x y+2 y^{2}=0$
Comparing with $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}=0$,
We get $a=3, b=2$
Given that 45° is the acute angle between the lines.
$\therefore \tan \left(45^{\circ}\right)=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|$
$\therefore 1=\left|\frac{2 \sqrt{\mathrm{~h}^{2}-(3)(2)}}{3+2}\right|$
$\therefore 1=\left|\frac{2 \sqrt{\mathrm{~h}^{2}-6}}{5}\right|$
$\therefore\left(\frac{5}{2}\right)^{2}=\mathrm{h}^{2}-6$
$\therefore \mathrm{h}^{2}=\frac{25}{4}+6$
$\therefore \mathrm{h}^{2}=\frac{49}{4}$
$\therefore \mathrm{h}= \pm \frac{7}{2}$
Q. 10

Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} \mathrm{~d} x$
Ans.
Let $\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} \mathrm{~d} x$
Put $\tan \left(\frac{x}{2}\right)=\mathrm{t}$
$\therefore \mathrm{x}=2 \tan ^{-1} \mathrm{t}$
$\therefore \mathrm{dx}=\frac{2 \mathrm{dt}}{1+\mathrm{t}^{2}}, \sin \mathrm{x} \frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$ and $\mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$
When $\mathrm{x}=0, \mathrm{t}=0$ and when $\mathrm{x}=\frac{\pi}{2}, \mathrm{t}=1$
$\therefore \mathrm{I}=\int_{0}^{1} \frac{\left(\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}\right)^{2}}{\left(1+\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}\right)^{2}} \cdot \frac{2 \mathrm{dt}}{1+\mathrm{t}^{2}}$
$\therefore \mathrm{I}=\int_{0}^{1} \frac{\left(\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}\right)^{2}}{\left(1+\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}\right)^{2}} \cdot \frac{2 \mathrm{dt}}{1+\mathrm{t}^{2}}$
$=\int_{0}^{1} \frac{\frac{4 t^{2}}{\left(1+t^{2}\right)^{2}}}{\frac{4}{\left(1+t^{2}\right)^{2}}} \cdot \frac{2 \mathrm{dt}}{1+\mathrm{t}^{2}}$
$=2 \int_{0}^{1} \frac{t^{2}}{1+t^{2}} d t$
$=2 \int_{0}^{1}\left(\frac{1+\mathrm{t}^{2}-1}{1+\mathrm{t}^{2}}\right) \mathrm{dt}$
$=2 \int_{0}^{1}\left(1+\frac{1}{1+\mathrm{t}^{2}}\right) \mathrm{dt}$

$$
\begin{aligned}
& =2\left[\mathrm{t}-\tan ^{-1} \mathrm{t}\right]_{0}^{1} \\
& =2\left[\left(1-\tan ^{-1} 1\right)-\left(0-\tan ^{-1} 0\right)\right] \\
& =2\left(1-\frac{\pi}{4}\right) \\
& =\frac{4-\pi}{2}
\end{aligned}
$$

Q. 11 Water is being poured at the rate of $36 \mathrm{~m}^{3} / \mathrm{sec}$ in to a cylindrical vessel of base radius 3 meters. Find the rate at which water level is rising
Ans. Let h be the height of water level, r be the radius of the base and V be the volume of the cylindrical vessel.

$$
\begin{aligned}
& \text { Then, } r=3 \text { metres, } \frac{d V}{d T} \\
& =36 \mathrm{~m}^{3} / \mathrm{sec} \\
& V=\pi r^{2} \mathrm{~h} \\
& =\pi(3)^{2} \mathrm{~h} \\
& =9 \pi \mathrm{~h}
\end{aligned}
$$

Differentiating w.r.t.t, we get

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=9 \pi \cdot \frac{\mathrm{dh}}{\mathrm{dt}}
$$

$$
\therefore \frac{\mathrm{dh}}{\mathrm{dt}}=\left(\frac{\mathrm{dV}}{\mathrm{dt}}\right) \times \frac{1}{9 \pi}
$$

$$
=\frac{36}{9 \pi}
$$

$$
=\frac{4}{\pi} \mathrm{~m} / \mathrm{sec}
$$

Thus, water level is rising at the rate of $\frac{4}{\pi} \mathrm{~m} / \mathrm{sec}$.
Q. 12
$\int[\operatorname{cosec}(\log x)][1-\cot (\log x)] \mathrm{d} x$
Ans.
Let $\mathrm{I}=\int[\operatorname{cosec}(\log x)][1-\cot (\log x)] \mathrm{d} x$
Put $\log _{\mathrm{e}} \mathrm{x}=\mathrm{t}$
$\therefore \mathrm{x}=\mathrm{e}^{\mathrm{t}}$
$\therefore \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \cdot \mathrm{dt}$
$\therefore \mathrm{I}=\int \operatorname{cosec} \mathrm{t}(1-\cot \mathrm{t}) \mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$=\int e^{t}(\operatorname{cosec} t-\operatorname{cosec} t \cdot \cot t) d t$
Put $f(t)=\operatorname{cosec} t$
$\therefore \mathrm{f}^{\prime}(\mathrm{t})=-\operatorname{cosec} \mathrm{t} \cdot \cot \mathrm{t}$
$\therefore \mathrm{I}=\int \mathrm{e}^{\mathrm{t}}\left[\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime}(\mathrm{t})\right] \mathrm{dt}$
$=e^{t} \cdot f(t)+c=e^{t} \operatorname{cosec} t+c$
$\therefore \mathrm{I}=x \operatorname{cosec}(\log x)+\mathrm{c}$

Q. 13

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are position vectors of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively and $5 \bar{a}-3 \bar{b}-2 \bar{c}=\overline{0}$, then find the ratio in which the point C divides the line segement $B A$
Ans.
$5 \bar{a}-3 \bar{b}-2 \bar{c}=0$
$\therefore 2 \overline{\mathrm{c}}=5 \overline{\mathrm{a}}-3 \overline{\mathrm{~b}}$
$\therefore \overline{\mathrm{c}}=\frac{5 \overline{\mathrm{a}}-3 \overline{\mathrm{~b}}}{2}$
$\therefore \overline{\mathrm{c}}=\frac{5 \overline{\mathrm{a}}-3 \overline{\mathrm{~b}}}{5-3}$
\therefore The point C divides the line segment BA externally in ratio 5:3.
Q. 14 If a line has the direction ratios $4,-12,18$, then find its direction cosines Ans. Direction ratios of the line are $a=4, b=-12, c=18$.
Let $\mathrm{l}, \mathrm{m}, \mathrm{n}$ be the direction cosines of the line.

$$
\begin{aligned}
& \text { Then } I=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{4}{\sqrt{4^{2}+(-12)^{2}+(18)^{2}}} \\
& =\frac{4}{\sqrt{16+144+324}} \\
& =\frac{4}{22} \\
& =\frac{2}{11} \\
& m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-12}{\sqrt{16+144+324}} \\
& =\frac{-12}{22} \\
& =\frac{-6}{11} \\
& \text { and } \\
& \mathrm{n}=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}} \\
& =\frac{18}{\sqrt{4^{2}+(-12)^{2}+(18)^{2}}} \\
& =\frac{18}{\sqrt{16+144+324}} \\
& =\frac{18}{22} \\
& =\frac{9}{11}
\end{aligned}
$$

Hence, the direction cosines of the line are $\frac{2}{11}, \frac{-6}{11}, \frac{9}{11}$.

Q. 15 | Attempt any Eight:

Q. 15 (A) Write the following statements in symbolic form Milk is white if and only if the sky is not blue
Q. 15 (B) Write the following statements in symbolic form If Kutab - Minar is in Delhi then Taj - Mahal is in Agra
Q. 15 (C) Write the following statements in symbolic form Even though it is not cloudy, it is still raining

Ans. (A) Let p: Milk is white.
q: Sky is blue.

The given statement in symbolic form is $\mathrm{p} \leftrightarrow \sim \mathrm{q}$.
Ans. (B) Let p: If Kutub - Minar is in Delhi.
q: Taj - Mahal Is in Agra.
The given statement in symbolic form is $p \rightarrow q$.
Ans. (C) Let p: It is cloudy.
q : It is still raining.
\therefore The symbolic form of the given statement is $\sim \mathrm{p} \wedge \mathrm{q}$
Q. 16 Three chairs and two tables cost ₹ 1850 . Five chairs and three tables cost ₹ 2850 . Find the cost of four chairs and one table by using matrices

Ans. Let the cost of 1 chair and 1 table be ₹ x and ₹ y respectively.
According to the first condition,
$3 x+2 y=1850$
According to the second condition,
$5 x+3 y=2850$
Matrix form of the above system of equations is

$$
\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1850 \\
2850
\end{array}\right]
$$

Applying $R_{2} \rightarrow 3 R_{2}-5 R_{1}$, we get

$$
\left[\begin{array}{cc}
3 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1850 \\
-700
\end{array}\right]
$$

\therefore By equality of matrices, we get
$3 \mathrm{x}+2 \mathrm{y}=1850$
$-y=-700$
Substituting y $=700$ in equation (i), we get
$3 x+2(700)=1850$
$\therefore 3 \mathrm{x}=450$
$\therefore \mathrm{x}=150$
\therefore The cost of four chairs $=4 \times 150=₹ 600$
\therefore The cost of four chairs and one table is ₹ $600+₹ 700=₹ 1300$.
Q. 17

Transform $\left[\begin{array}{ccc}1 & 2 & 4 \\ 3 & -1 & 5 \\ 2 & 4 & 6\end{array}\right]$ into an upper triangular matrix by using suitable row transformations
Ans.

$$
\text { Let } \mathrm{A}=\left[\begin{array}{ccc}
1 & 2 & 4 \\
3 & -1 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

Applying $R_{2} \rightarrow R_{2}-3 R_{1}$ and $R_{3} \rightarrow R_{3}-2 R_{1}$, we get
$\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & -7 & -7 \\ 0 & 0 & -2\end{array}\right]$
This is required upper triangular matrix.
Q. 18 If the angles A, B, C of $\triangle A B C$ are in A.P. and its sides a, b, c are in G.P., then show that $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in A.P.

Ans. A, B, C are in A.P.
$\therefore \mathrm{A}+\mathrm{C}=2 \mathrm{~B}$
We know that $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
$\therefore 2 \mathrm{~B}+\mathrm{B}=180^{\circ}$
$\therefore 3 \mathrm{~B}=180^{\circ}$
$\therefore \angle \mathrm{B}=60^{\circ}$
Also, it is given that sides a, b, c are in G.P.
$\therefore \mathrm{ac}=\mathrm{b}^{2}$
$\therefore \mathrm{ac}=\mathrm{b}^{2}$
Consider, $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$.......[By cosine rule]
$\therefore \cos \left(60^{\circ}\right)=\frac{a^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{~b}^{2}} \ldots \ldots . .[$ From (i) and (ii)]
$\therefore \frac{1}{2}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{~b}^{2}}$
$\therefore \mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}$
$\therefore \mathrm{a}^{2}+\mathrm{c}^{2}=2 \mathrm{~b}^{2}$
$\therefore \mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in A.P.
Q. 19

In $\triangle A B C$, prove that $\frac{\cos 2 A}{a^{2}}-\frac{\cos 2 c}{c^{2}}=\frac{1}{a^{2}}-\frac{1}{c^{2}}$
Ans.

$$
\begin{aligned}
& \text { Consider L.H.S. }=\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^{2}}-\frac{\cos 2 \mathrm{c}}{\mathrm{c}^{2}} \\
& =\frac{1-2 \sin ^{2} \mathrm{~A}}{\mathrm{a}^{2}}-\frac{1-2 \sin ^{2} \mathrm{C}}{\mathrm{c}^{2}} \\
& =\frac{1}{\mathrm{a}^{2}}-2 \frac{\sin ^{2} \mathrm{~A}}{\mathrm{a}^{2}}-\frac{1}{\mathrm{c}^{2}}+2 \frac{\sin ^{2} \mathrm{C}}{\mathrm{c}^{2}} \\
& =\frac{1}{\mathrm{a}^{2}}-2 \mathrm{k}^{2}-\frac{1}{\mathrm{c}^{2}}+2 \mathrm{k}^{2} \ldots[\text { By since rule }] \\
& =\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{c}^{2}} \\
& =\text { R.H.S. }
\end{aligned}
$$

Q. 20 The probability that a person who undergoes a kidney operation will be recovered is 0.5 . Find the probability that out of 6 patients who undergo similar operation none will recover

Ans. Let X denote the number of patients recovered.
P (patient recovers) $=\mathrm{p}=0.5$
$\therefore \mathrm{q}=1-\mathrm{p}=1-0.5=0.5$
Given, $n=6$
$\therefore \mathrm{X} \sim \mathrm{B}(6,0.5)$
The p.m.f. of X is given by
$\mathrm{P}(\mathrm{X}=\mathrm{x})={ }^{6} \mathrm{C}_{\mathrm{x}}(0.5)^{\mathrm{x}}(0.5)^{6-\mathrm{x}}, \mathrm{x}=0,1, \ldots, 6$
$P($ none will recover $)=P(X=0)$
$={ }^{6} \mathrm{C}_{0}(0.5)^{0}(0.5)^{6}$
$=` 1 / 2^{\wedge} 6$
$=\frac{1}{64}$
Q. 21

Prove that: $\int_{0}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-x) \mathrm{d} x$. Hence find $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \mathrm{~d} x$
Ans.
Consider R.H.S : $\int_{0}^{a} f(a-x) d x$
Let $\mathrm{I}=\int_{0}^{a} \mathrm{f}(\mathrm{a}-x) \mathrm{d} x$

Put $\mathrm{a}-\mathrm{x}=\mathrm{t}$
$\therefore-\mathrm{dx}=\mathrm{dt}$
$\therefore-\mathrm{dx}=\mathrm{dt}$
When $\mathrm{x}=0, \mathrm{t}=\mathrm{a}-0=\mathrm{a}$
and when $\mathrm{x}=\mathrm{a}, \mathrm{t}=\mathrm{a}-\mathrm{a}=0$

$$
\begin{aligned}
& \therefore I=\int_{4}^{0} f(t)(-d t) \\
& =-\int_{a}^{0} f(t) d t \\
& =\int_{0}^{a} f(t) d t \quad \ldots . . .\left[\because \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right] \\
& =\int_{0}^{a} f(x) d x \quad \ldots . . .\left[\because \int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t\right] \\
& =\text { L.H.S. }
\end{aligned}
$$

$$
\therefore \int_{0}^{a} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{a} \mathrm{f}(\mathrm{a}-x) \mathrm{d} x
$$

$$
\begin{equation*}
\text { Let } \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \mathrm{~d} x \tag{i}
\end{equation*}
$$

$$
=\int_{0}^{\frac{\pi}{2}} \sin ^{2}\left(\frac{\pi}{2}-x\right) \mathrm{d} x \quad \ldots \ldots . .\left[\because \int_{0}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-x) \mathrm{d} x\right]
$$

$$
\begin{equation*}
\therefore \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} \mathrm{~d} x \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \mathrm{~d} x+\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \mathrm{~d} x \\
& =\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{2} x\right) \mathrm{d} x \\
& \therefore \text { II }=\int_{0}^{\frac{\pi}{2}} 1 \cdot \mathrm{~d} x \\
& \therefore \mathrm{I}=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}} \\
& \therefore \mathrm{I}=\frac{1}{2}\left(\frac{\pi}{2}-0\right) \\
& \therefore \mathrm{I}=\frac{\pi}{4}
\end{aligned}
$$

Q. 22

Verify $y=\log x+c$ is the solution of differential equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
Ans. $\mathrm{y}=\log \mathrm{x}+\mathrm{c}$
Differentiating w.r.t. x , we get

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x} \\
& \therefore x \frac{\mathrm{~d} y}{\mathrm{~d} x}=1
\end{aligned}
$$

Again, differentiating w.r.t. x, we get
$x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x} \times 1=0$
$\therefore x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$\therefore \mathrm{y}=\log \mathrm{x}+\mathrm{c}$ is the solution of $x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Q. 23 Find the differential equation by eliminating arbitrary constants from the relation $\mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{ax}$

Ans. $x^{2}+y^{2}=2 a x$
Here, a is an arbitrary constant.
Differentiating (i) w.r.t. x, we get

$$
\begin{aligned}
& 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{a} \\
& \therefore 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x^{2}+y^{2}}{x} \ldots . .[\text { From (i) }] \\
& \therefore 2 x^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \therefore 2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{y}^{2}-\mathrm{x}^{2}
\end{aligned}
$$

Q. 24

If logs $\left(\frac{x^{4}+y^{4}}{x^{4}-y^{4}}\right)=2$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 x^{2}}{13 y^{3}}$
Ans.

$$
\begin{aligned}
& \operatorname{logs}\left(\frac{x^{4}+y^{4}}{x^{4}-y^{4}}\right)=2 \\
& \therefore \frac{x^{4}+y^{4}}{x^{4}-y^{4}}=5^{2}=25 \\
& \therefore x^{4}+y^{4}=25 x^{4}-25 y^{4} \\
& \therefore-24 x^{4}+26 y^{4}=0 \\
& \therefore-12 x^{4}+13 y^{4}=0
\end{aligned}
$$

Differentiating w. r. t. x, we get

$$
\begin{aligned}
& \therefore-12\left(4 x^{3}\right)+13\left(4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=0 \\
& \therefore-12 x^{3}+13 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \therefore 13 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 x^{3} \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{12 x^{3}}{13 y^{3}}
\end{aligned}
$$

Q. 25

Find the vector equation of the line passing through the point having position vector $-\hat{i}-\hat{j}+2 \hat{k}$ and parallel to the line
$\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+\hat{k}), \mu$ is a parameter

Ans.

Let \bar{a} be the position vector of the point
$\therefore \overline{\mathrm{a}}=-\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Equation of given line is $\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+\hat{k})$
\therefore Direction ratios of the line are $3,2,1$.
Let $\overline{\mathrm{b}}$ be the vector parallel to this line.
$\therefore \overline{\mathrm{b}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
The vector equation of a line passing through a point with position vector \bar{a} and parallel to \bar{b} is $\bar{r}=\bar{a}+\lambda \overline{\mathrm{b}}$.
\therefore Vector equation of the line is $\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
Q. 26

Find the equation of the plane passing through the point $(7,8,6)$ and parallel to the plane
$\overline{\mathrm{r}} \cdot(6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})=0$
Ans. The plane passes through the point $\mathrm{A}(7,8,6)$.
$\therefore \mathrm{x}_{1}=7, \mathrm{y}_{1}=8, \mathrm{z}_{1}=6$
Since the required plane is parallel to the plane $\bar{r} \cdot(6 \hat{i}+8 \hat{j}+7 \hat{k})=0$
Direction ratios of normal vector will be $a=6, b=8, c=7$.
Equation of a plane in Cartesian form is
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
$\therefore 6(\mathrm{x}-7)+8(\mathrm{y}-8)+7(\mathrm{z}-6)=0$
$\therefore 6 \mathrm{x}-42+8 \mathrm{y}-64+7 \mathrm{z}-42=0$
$\therefore 6 \mathrm{x}+8 \mathrm{y}+7 \mathrm{z}=42+42+64$
$\therefore 6 \mathrm{x}+8 \mathrm{y}+7 \mathrm{z}=148$

Q. 27 Attempt any Five:

The following is the c.d.f. of r.v. X :

\mathbf{X}	-3	-2	-1	0	1	2	3	4
$\mathbf{F}(\mathbf{X})$	0.1	0.3	0.5	0.65	0.75	0.85	0.9	1

Find p.m.f. of X .
i. $\mathrm{P}(-1 \leq \mathrm{X} \leq 2)$
ii. $\mathrm{P}(\mathrm{X} \leq 3 / \mathrm{X}>0)$.

Ans. From the given table
$F(-3)=0.1, F(-2)=0.3, F(-1)=0.5$
$F(0)=0.65, f(1)=0.75, F(2)=0.85$
$F(3)=0.9, F(4)=1$
$\mathrm{P}(\mathrm{X}=-3)=\mathrm{F}(-3)=0.1$
$\mathrm{P}(\mathrm{X}=-2)=\mathrm{F}(-2)-\mathrm{F}(-3)=0.3-0.1=0.2$
$\mathrm{P}(\mathrm{X}=-1)=\mathrm{F}(-1)-\mathrm{F}(-2)=0.5-0.3=0.2$
$\mathrm{P}(\mathrm{X}=0)=\mathrm{F}(0)-\mathrm{F}(-1)=0.65-0.5=0.15$
$P(X=1)=F(1)-F(0)=0.75-0.65=0.1$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=2)=\mathrm{F}(2)-\mathrm{F}(1)=0.85-0.75=0.1 \\
& \mathrm{P}(\mathrm{X}=3)=\mathrm{F}(3)-\mathrm{F}(2)=0.9-0.85=0.05 \\
& \mathrm{P}(\mathrm{X}=4)=\mathrm{F}(4)-\mathrm{F}(3)=1-0.9=0.1
\end{aligned}
$$

\therefore The probability distribution of X is as follows:

$\mathbf{X}=\mathbf{x}$	-3	-2	-1	0	1	2	3	4
$\mathbf{P}(\mathbf{X}=\mathbf{x})$	0.1	0.2	0.2	0.15	0.1	0.1	00.5	0.1

i. $P(-1 \leq X \leq 2)$
$=\mathrm{P}(\mathrm{X}=-1$ or $\mathrm{X}=0$ or $\mathrm{X}=1$ or $\mathrm{X}=2)$
$=P(X=-1)+P(X=0)+P(X=1)+P(X=2)$
$=0.2+0.15+0.1+0.1$
$=0.55$
ii. $P(X \leq 3 / X>0)$

$$
\begin{aligned}
& =\frac{P(X=1 \text { or } X=2 \text { or } X+3)}{P(X=1 \text { or } X=2 \text { or } X=3 \text { or } X=4)} \quad \ldots . . .\left[\begin{array}{c}
\text { Using conditional probability } \\
P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}
\end{array}\right] \\
& =\frac{P(X=1)+P(X=2)+P(X=3)}{P(X=1)+P(X=2)+P(X=3)+P(X=4)} \\
& =\frac{0.1+0.1+0.05}{0.1+0.1+0.05+0.1} \\
& =\frac{0.25}{0.35} \\
& =\frac{5}{7}
\end{aligned}
$$

Q. 28 Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines $2 x+3 y=0$ and $x-2 y=0$

Ans.

Let $a_{1} x+b_{1} y=0$ and $a_{2} x+b_{2} y=0$ be a pair of lines passing through the origin.
\therefore Their combined equation is $\left(a_{1} x+b_{1} y\right)\left(a_{2} x+b_{2} y\right)=0$
$\therefore \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{x}_{2}+\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{xy}+\mathrm{b}_{1} \mathrm{a}_{2} \mathrm{xy}+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{y}^{2}=0$
$\therefore\left(a_{1} a_{2}\right) x^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) x y+\left(b_{1} b_{2}\right) y^{2}=0$
In this if we put $a_{1} a_{2}=a, a_{1} b_{2}+a_{2} b_{1}=2 h, b_{1} b_{2}=b$, We get $a x^{2}+2 h x y+b^{2}=0$ which is a homogeneous equation of degree 2 in x and y.

Now, on comparing $2 \mathrm{x}+3 \mathrm{y}=0$ and $\mathrm{x}-2 \mathrm{y}=0$ with $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}=0$, we get $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{a}_{2}=1$ and $\mathrm{b}_{2}=-2$

Substituting in equation (i), we get
$2(1) x^{2}+[2(-2)+1(3)] x y+3(-2) y^{2}=0$
i.e., $2 x^{2}-x y-6 y^{2}=0$,

Which is the required combined equation.
Q. 29

If $y=\cos \left(m \cos ^{-1} x\right)$, then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0$
Ans. $\mathrm{y}=\cos \left(\mathrm{m} \cos ^{-1} \mathrm{x}\right)$
Differentiating w.r.t. x , we get

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=-\sin \left(\mathrm{m} \cos ^{-1} x\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{~m} \cos ^{-1} x\right) \\
& \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=-\sin \left(\mathrm{m} \cos ^{-1} x\right)\left[\frac{\mathrm{m}}{\sqrt{1-x^{2}}}\right] \\
& \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\sin \left(\mathrm{m} \cos ^{-1} x\right)\left[\frac{\mathrm{m}}{\sqrt{1-x^{2}}}\right] \tag{ii}
\end{align*}
$$

$\therefore \sqrt{1-x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{m} \sin \left(\mathrm{m} \cos ^{-1} \mathrm{x}\right)$
Squaring on both sides, we get

$$
\left(1-x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\mathrm{m}^{2} \sin ^{2}\left(\mathrm{~m} \cos ^{-1} \mathrm{x}\right)
$$

Again, differentiating w. r.t. x, we get
$\left(1-x^{2}\right) \cdot 2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}(-2 x)=\mathrm{m}^{2}\left[2 \sin \left(\mathrm{~m} \cos ^{-1} x\right)\right] \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[\sin \left(\mathrm{~m}^{-1} \cos ^{-1} x\right)\right]$
$\therefore 2\left(1-x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}=-2 \mathrm{~m}^{2} \mathrm{y} \frac{\mathrm{d} y}{\mathrm{~d} x} \ldots[$ [From (i) and (ii)]
Dividing both sides by $2 \frac{\mathrm{~d} y}{\mathrm{~d} x}$, we get

$$
\begin{aligned}
& \left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\mathrm{m}^{2} \mathrm{y} \\
& \therefore\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\mathrm{m}^{2} y=0
\end{aligned}
$$

Q. 30 A man of height 180 cm is moving away from a lamp post at the rate of 1.2 meters per second. If the height of the lamp post is 4.5 meters, find the rate at which
(i) his shadow is lengthening
(ii) the tip of the shadow is moving

Ans. Let OA be the lamp post, MN be the man, $\mathrm{MB}=\mathrm{x}$ be the length of the shadow and $\mathrm{OM}=$ y be the distance of the man from the lamp post at time t.

Then,

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{dt}}=1.2 \mathrm{~m} / \mathrm{sec}, \mathrm{MN}=180 \mathrm{~cm}=1.8 \mathrm{~m}, \mathrm{OA}=4.5 \mathrm{~m} \tag{Given}
\end{equation*}
$$

(i) $\triangle \mathrm{NMB} \sim \triangle \mathrm{AOB}$
$\therefore \frac{\mathrm{MB}}{\mathrm{MN}}=\frac{\mathrm{OB}}{\mathrm{OA}}$
$\therefore \frac{x}{1.8}=\frac{x+y}{4.5}$
$\therefore 4.5 \mathrm{x}=1.8 \mathrm{x}+1.8 \mathrm{y}$
$\therefore 2.7 \mathrm{x}=1.8 \mathrm{y}$
$\therefore \mathrm{x}=\frac{1.8 y}{2.7}$
$=\frac{2 y}{3}$
Differentiating w.r.t. t, we get
$\frac{\mathrm{d} x}{\mathrm{dt}}=\frac{2}{3} \times \frac{\mathrm{d} y}{\mathrm{dt}}$
$=\frac{2}{3} \times 1.2$
$=0.8 \mathrm{~m} / \mathrm{sec}$
(ii) B is the tip of the shadow and it is at a distance of $(x+y)$ from the lamp post.

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}}(x+y)=\frac{\mathrm{d} x}{\mathrm{dt}}+\frac{\mathrm{d} y}{\mathrm{dt}} \\
& \therefore \frac{\mathrm{~d}}{\mathrm{dt}}(x+y)=0.8+1.2
\end{aligned}
$$

$=2 \mathrm{~m} / \mathrm{sec}$
Thus, the shadow is lengthening at the rate of $0.8 \mathrm{~m} / \mathrm{sec}$ and its tip is moving at the rate of $2 \mathrm{~m} / \mathrm{sec}$.
Q. 31

$$
\int \frac{(2 \log x+3)}{x(3 \log x+2)\left[(\log x)^{2}+1\right]} \mathrm{d} x
$$

Ans.

$$
\text { Let } \mathrm{I}=\int \frac{(2 \log x+3)}{x(3 \log x+2)\left[(\log x)^{2}+1\right]} \mathrm{d} x
$$

$$
\text { Put } \log x=t
$$

$$
\therefore \frac{1}{x} \mathrm{~d} x=d t
$$

$$
\therefore \mathrm{I}=\int \frac{2 \mathrm{t}+3}{(3 \mathrm{t}+2)\left(\mathrm{t}^{2}+1\right)} \mathrm{dt}
$$

$$
\text { Let } \frac{2+3}{(3 t+2)\left(t^{2}+1\right)}=\frac{\mathrm{A}}{3 \mathrm{t}+2}+\frac{\mathrm{Bt}+\mathrm{C}}{\mathrm{t}^{2}+1}
$$

$$
\begin{equation*}
\therefore 2 t+3=A\left(t^{2}+1\right)+(B t+C)(3 t+2) \tag{i}
\end{equation*}
$$

Putting $\mathrm{t}=-\frac{2}{3}$ in (i), we get
$2\left(\frac{-2}{3}\right)+3=\mathrm{A}\left[\left(\frac{-2}{3}\right)^{2}+1\right]$
$\therefore \frac{-4}{3}+3=\mathrm{A}\left(\frac{4}{9}+1\right)$
$\therefore \frac{5}{3}=\mathrm{A}\left(\frac{13}{9}\right)$
$\therefore \mathrm{A}=\frac{15}{13}$
Putting $t=0$ in (i), we get
$3=A(1)+C(2)$
$\therefore 3=\frac{15}{13}+2 \mathrm{C}$
$\therefore 3-\frac{15}{13}=2 C$
$\therefore \frac{24}{13}=2 \mathrm{C}$
$\therefore C=\frac{12}{13}$
Putting $t=1$ in (i), we get
$2+3=A(1+1)+(B+C)(3+2)$
$\therefore 5=2 A+5(B+C)$

$$
\begin{aligned}
& \therefore 5=2\left(\frac{15}{13}\right)+5\left(B+\frac{12}{13}\right) \\
& \therefore 5=\frac{30}{13}+5 B+\frac{60}{13} \\
& \therefore 5 B=5-\frac{30}{13}-\frac{60}{13} \\
& \therefore 5 B=-\frac{25}{13} \\
& \therefore B=\frac{-5}{13}
\end{aligned}
$$

$$
\therefore \frac{2 \mathrm{t}+3}{(3 \mathrm{t}+2)\left(\mathrm{t}^{2}+1\right)}=\frac{\frac{15}{13}}{3 \mathrm{t}+2}+\frac{-\frac{5}{13} \mathrm{t}+\frac{12}{13}}{\mathrm{t}^{2}+1}
$$

$$
\therefore \mathrm{I}=\int\left(\frac{\frac{15}{13}}{3 \mathrm{t}+2}+\frac{\frac{-5}{13} \mathrm{t}+\frac{12}{13}}{\mathrm{t}^{2}+1}\right) \mathrm{dt}
$$

$$
=\frac{15}{13} \int \frac{1}{3 t+2} d t-\frac{5}{13} \int \frac{\mathrm{t}}{\mathrm{t}^{2}+1} \mathrm{dt}+\frac{12}{13} \int \frac{1}{\mathrm{t}^{2}+1} d t
$$

$$
=\frac{15}{13} \int \frac{1}{3 \mathrm{t}+2} \mathrm{dt}-\frac{5}{13} \cdot \frac{1}{2} \int \frac{2 \mathrm{t}}{\mathrm{t}^{2}+1} \mathrm{dt}+\frac{12}{13} \int \frac{1}{\mathrm{t}^{2}+1} d \mathrm{t}
$$

$$
=\frac{15}{13} \cdot \frac{\log |3 \mathrm{t}+2|}{3}-\frac{5}{26} \log \left|\mathrm{t}^{2}+1\right|+\frac{12}{13} \tan ^{-1} \mathrm{t}+\mathrm{c}
$$

$$
\therefore \mathrm{I}=\frac{5}{13} \log |3 \log x 2|-\frac{5}{26} \log \left|(\log x)^{2}+1\right|+\frac{12}{13} \tan ^{-1}(\log x)+\mathrm{c}
$$

Q. 32
$\int \frac{3 x+4}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x$
Ans.

$$
\begin{aligned}
& \text { Let } \mathrm{I}=\int \frac{3 x+4}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x \\
& \text { Let } 3 \mathrm{x}+4=\mathrm{A} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(2 x^{2}+2 x+1\right)+\mathrm{B} \\
& \therefore 3 \mathrm{x}+4=\mathrm{A}(4 \mathrm{x}+2)+\mathrm{B} \\
& \therefore 3 \mathrm{x}+4=4 \mathrm{Ax}+2 \mathrm{~A}+\mathrm{B}
\end{aligned}
$$

By equating the coefficients on both sides, we get

$$
4 \mathrm{~A}=3 \text { and } 2 \mathrm{~A}+\mathrm{B}=4
$$

$$
\therefore \mathrm{A}=\frac{3}{4} \text { and } 2\left(\frac{3}{4}\right)+\mathrm{B}=4
$$

$$
\therefore \mathrm{B}=\frac{5}{2}
$$

$$
\therefore 3 x+4=\frac{3}{4}(4 x+2)+\frac{5}{2}
$$

$$
\therefore \mathrm{I}=\int \frac{\frac{3}{4}(4 x+2)+\frac{5}{2}}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x
$$

$$
=\frac{3}{4} \int \frac{4 x+2}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x+\frac{5}{2} \int \frac{1}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x
$$

$$
=I_{1}+I_{2}
$$

$$
\mathrm{I}_{1}=\frac{3}{4} \int \frac{4 x+2}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x
$$

$$
\text { Put } 2 x^{2}+2 x+1=t
$$

$$
\therefore(4 \mathrm{x}+2) \mathrm{dx}=\mathrm{dt}
$$

$$
\therefore \mathrm{I}_{1}=\frac{3}{4} \int \frac{\mathrm{dt}}{\sqrt{\mathrm{t}}}
$$

$$
\begin{aligned}
& =\frac{3}{4}\left(\frac{\mathrm{t}^{\frac{1}{2}}}{\frac{1}{2}}\right)+\mathrm{c}_{1} \\
& =\frac{3}{2} \sqrt{\mathrm{t}}+\mathrm{c}_{1} \\
& \therefore \mathrm{I}_{1}=\frac{3}{2} \sqrt{2 x^{2}+2 x+1}+\mathrm{c}_{1} \\
& \mathrm{I}_{2}=\frac{5}{2} \int \frac{1}{\sqrt{2 x^{2}+2 x+1}} \mathrm{~d} x \\
& =\frac{5}{2} \int \frac{1}{\sqrt{2\left(x^{2}+x+\frac{1}{2}\right)}} \mathrm{d} x
\end{aligned}
$$

$$
\left(\frac{1}{2} \text { coefficient of } x\right)^{2}=\left(\frac{1}{2} \times 1\right)^{2}
$$

$$
=\frac{1}{4}
$$

$$
\therefore \mathrm{I}_{2}=\frac{5}{2 \sqrt{2}} \int \frac{1}{\sqrt{x^{2}+x+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}}} \mathrm{~d} x
$$

$$
=\frac{5}{2 \sqrt{2}} \int \frac{1}{\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} \mathrm{~d} x
$$

$$
=\frac{5}{2 \sqrt{2}} \log \left|x+\frac{1}{2}+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\right|+\mathrm{c}_{2}
$$

$$
\begin{equation*}
\therefore \mathrm{I}_{2}=\frac{5}{2 \sqrt{2}} \log \left|x+\frac{1}{2}+\sqrt{x^{2}+x+\frac{1}{2}}\right|+\mathrm{c}_{2} \tag{iii}
\end{equation*}
$$

From (i), (ii) and (iii), we get
$\mathrm{I}=\frac{3}{2} \sqrt{2 x^{2}+2 x+1}+\frac{5}{2 \sqrt{2}} \log \left|x+\frac{1}{2}+\sqrt{x^{2}+x+\frac{1}{2}}\right|+\mathrm{c}$,
where $c=c^{1}+c^{2}$
Q. $33 \mathrm{~A}(-2,3,4), \mathrm{B}(1,1,2)$ and $\mathrm{C}(4,-1,0)$ are three points. Find the Cartesian equations of the line AB and show that points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear

Ans. We find the cartesian equations of the line AB .
The cartesian equations of the line passing through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Here, $\left(\mathrm{x}_{1}, \mathrm{y} 1, \mathrm{z}_{1}\right) \equiv(-2,3,4)$ and $\left(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z}_{2}\right) \equiv(4,-1,0)$
\therefore The required cartesian equations of the line AB are

$$
\begin{aligned}
& \frac{x-(-2)}{4-(-2)}=\frac{y-3}{-1-3}=\frac{z-4}{0-4} \\
& \therefore \frac{x+2}{6}=\frac{y-3}{-4}=\frac{z-4}{-4} \\
& \therefore \frac{x+2}{3}=\frac{y-3}{-2}=\frac{z-4}{-2} \\
& C=(4,-1,0)
\end{aligned}
$$

For $\mathrm{x}=4, \frac{x+2}{3}=\frac{4+2}{3}=2$
For $\mathrm{y}=-1, \frac{y-3}{-2}=\frac{-1-3}{-2}=2$
For $\mathrm{z}=0, \frac{z-4}{-2}=\frac{0-4}{-2}=2$
\therefore Coordinates of C satisfy the equations of the line AB .
$\therefore \mathrm{C}$ lies on the line passing through A and B .
Hence, A, B, C are collinear.

Q. 34

Let $A(\bar{a})$ and $B(\bar{b})$ are any two points in the space
and $R(\bar{r})$ be a point on the line segment $A B$ dividing
it internally in the ratio $\mathrm{m}: \mathrm{n}$, then prove that
$\bar{r}=\frac{m \bar{b}+n \bar{a}}{m+n}$
Ans. R is a point on the line segment $A B(A-R-B)$ and $A R A R^{-}$and $R B R B^{-}$are in the same direction.

Point R divides $A B$ internally in the ratio $m: n$

$$
\therefore \frac{\mathrm{AR}}{\mathrm{RB}}=\frac{\mathrm{m}}{\mathrm{n}}
$$

$$
\therefore \mathrm{n}(\mathrm{AR})=\mathrm{m}(\mathrm{RB})
$$

As $n(\overline{\mathrm{AR}})$ and $m(\overline{\mathrm{RB}})$ have same direction and magnitude,
$n(\overline{\mathrm{AR}})=m(\overline{\mathrm{RB}})$
$\therefore \mathrm{n}(\mathrm{OR}-\overline{\mathrm{OA}})=\mathrm{m}(\overline{\mathrm{OB}}-\overline{\mathrm{OR}})$
$\therefore \mathrm{n}(\overline{\mathrm{r}}-\overline{\mathrm{a}})=\mathrm{m}(\overline{\mathrm{b}}-\overline{\mathrm{r}})$
$\therefore \mathrm{n} \overline{\mathrm{r}}-\mathrm{na}=\mathrm{m} \overline{\mathrm{b}}-\mathrm{m} \bar{r}$
$\therefore \mathrm{m} \bar{r}+\mathrm{n} \bar{r}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{na}$
$\therefore(\mathrm{m}+\mathrm{n}) \overline{\mathrm{r}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{n} \overline{\mathrm{a}}$
$\therefore \bar{r}=\frac{m \bar{b}+n \bar{a}}{m+n}$

