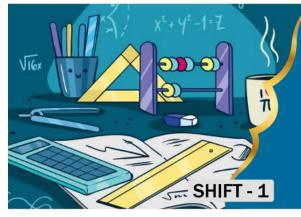


JEE MAIN 2024

JANUARY ATTEMPT

PAPER-1 (B.Tech / B.E.)



QUESTIONS & SOLUTIONS Reproduced from Memory Retention

27 JANUARY, 2024
9:00 AM to 12:00 Noon

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - MATHEMATICS

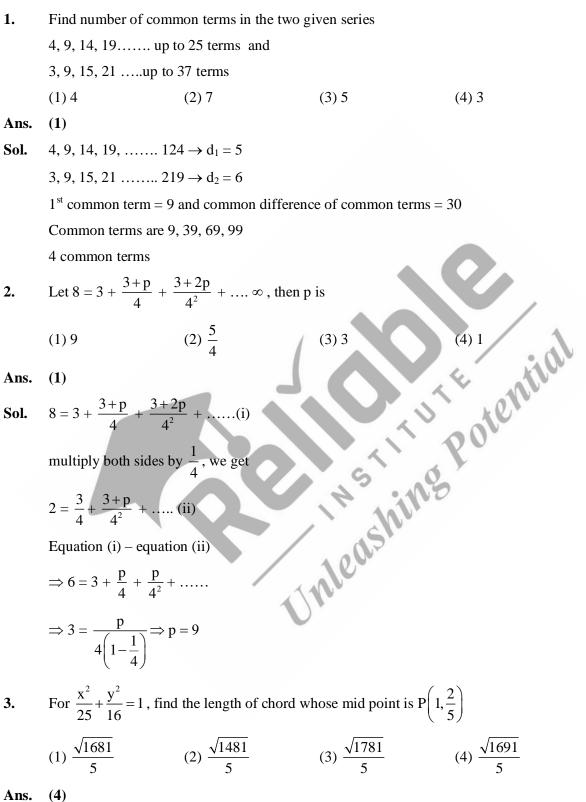
LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2024-25)

\bigcap	TARGET 2026		TARGET 2025	. (TARGET 2025	
	VIKAAS		νγαρακ		VISHESH	
	For Class X to XI		For Class XI to XII		For Class XII	
	Moving Students		Moving Students		Passed Students	
	Starting From :	l i	Starting From :		Starting From :	
Ĺ	3 & 17 APRIL'24		6 MAR & 3 APRIL'24	ĺ	20 & 27 MARCH'24	
Avail Scholarship up to 90% through R-NET on EVERY SUNDAY						

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

MATHEMATICS



	leashing Potential	
Sol.	By $T = S_1$	
	$\Rightarrow \frac{x}{25} + \frac{y}{16} = \frac{1}{25} + \frac{4}{25} \cdot \frac{1}{16}$	
	$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{4+1}{100}$	
	$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{1}{20}$	
	$\Rightarrow 8x + 5y = 10$	
	$\Rightarrow \frac{x^2}{25} + \left(\frac{10-8x}{5}\right)^2 \frac{1}{16} = 1$	
	$\Rightarrow \frac{x^2}{25} + \frac{4}{25} \left(\frac{5 - 4x}{16}\right)^2 = 1$	
	$\Rightarrow x^2 + \frac{\left(5 - 4x\right)^2}{4} = 25$	
	$\Rightarrow 4x^2 + (5 - 4x)^2 = 100$	
	$\Rightarrow 20x^2 - 8x - 15 = 0$	
	$x_1 + x_2 = 2$	
	$x_1 x_2 = \frac{-15}{4}$	Thentential
	length of chord = $ \mathbf{x}_1 - \mathbf{x}_2 \sqrt{1 + \mathbf{m}^2}$	1 00
	$=\frac{\sqrt{1691}}{5}$	
4.	If $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then find f'(10)	
Ans.		
Sol.	$f'(x) = 3x^{2} + 2xf'(1) + f'(2)$ f''(x) = 6x + 2f'(1) f'''(3) = 6	
	f''(x) = 6x + 2f'(1)	
	f "'(3) = 6	
	f '(1) = -5	
	f''(2) = 2	
	$\Rightarrow f'(10) = 300 + 20(-5) + 2$	
	= 202	
5.	Let $\int_{0}^{1} \frac{dx}{\sqrt{x+3} + \sqrt{x+1}} = A + B\sqrt{2} + C\sqrt{3}$ then the val	ue of $2A + 3B + C$ is
	(1) 3 (2) 4 (3) 5	(4) 6
Ans.	(1)	

Sol. On rationalising

$$\int_{0}^{1} \frac{(\sqrt{x+3} - \sqrt{x+1})}{2} dx$$

$$= \frac{2}{32} \left\{ (x+3)^{x^2} - (x+1)^{x^2} \right\}_{0}^{1}$$

$$= \frac{1}{3} \{8 - 3\sqrt{3} - (2\sqrt{2} - 1)\}$$

$$= \frac{1}{3} \{9 - 3\sqrt{3} - 2\sqrt{2}\}$$

$$= \left(3 - \sqrt{3} - \frac{2\sqrt{2}}{3} \right) : A = 3, B = -\frac{2}{3}, C = -1$$

$$\therefore 2A + 3B + C = 6 - 2 - 1 = 3$$
6. If $|z-i| = |z-1| = |z+i|$, $z \in C$, then the numbers of z satisfying the equation are (1) 0 (2) 1 (3) 2 (4) 4
Ans. (2)
Sol. z is equidistant from 1, i, $\& -i$
only $z = 0$ is possible
 \therefore number of z equal to 1
7. If sum of coefficients in $(1 - 3x + 10x^{2})^{n}$ and $(1 + x^{2})^{n}$ is A and B respectively, then
(1) $A^{3} = B$ (2) $A = B^{3}$ (3) $A = 2B$ (4) $A = B$
Ans. (2)
Sol. $A = 8^{n}$ $B = 2^{n}$
(B) $\therefore A = B^{3}$
8. Let $a_{1}, a_{2}, ..., a_{10}$ are 10 observations such that $\sum_{i=1}^{n} a_{i} = 50$ and $\sum_{i=j}^{m} a_{i} \cdot a_{j} = 1100$, then their
standard deviation will be
(1) $\sqrt{5}$ (2) $\sqrt{30}$ (3) $\sqrt{15}$ (4) $\sqrt{10}$
Ans. (1)
Sol. $(a_{1} + a_{2} + ..., + a_{10})^{2} = 50^{2}$
 $\Rightarrow \sum a_{i}^{2} + 2 \sum_{i=j} a_{i} a_{j} = 2500$
 $\Rightarrow \sum a_{i}^{2} = 300$
 $\sigma^{2} = \sum a_{i}^{2} = 300$
 $\sigma^{2} = \sum a_{i}^{2} = 300$
 $\sigma^{2} = \sum a_{i}^{2} = 10$

 $\cos x - \sin x = 0$ 9. 0 If $f(x) = |\sin x|$ cosx then 1 0 0 **Statement-1 :** f(-x) is inverse of f(x)**Statement-2**: f(x + y) = f(x)f(y)(2) Both are false (1) Both are true (3) Only statement 1 is true (4) Only statement 2 is true Ans. (1) $\cos x - \sin x \quad 0 \ \cos y - \sin y \quad 0$ $f(x)f(y) = \begin{vmatrix} \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \sin y \\ 0 \end{vmatrix}$ Sol. cosy 0 1 0 $\int \cos(x+y) - \sin(x+y) = 0$ $= \begin{vmatrix} \sin(x+y) & \cos(x-y) & 0 \end{vmatrix}$ 1 find $a \cdot b^3$ (4) 48 0 0 = f(x + y) $\therefore f(x) f(-x) = f(0)$ = I If $a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}}}{x^4}$ and $b = \lim_{n \to \infty} b^n$ 10. -nleashing $+\cos x$ (2) 32 (1) 16Ans. (2) $a = \lim_{x \to 0} \frac{1}{x^4}$ Sol. $\sqrt{1} + \sqrt{1} + x^4$ $= \lim_{x \to 0} \frac{1}{x^4 \left[\sqrt{1 + \sqrt{1 + x^4} + \sqrt{2}} \right]}$ $\sqrt{1+x^4} + 1$ $=\frac{1}{2\sqrt{2}\times 2}=\frac{1}{4\sqrt{2}}$ $b = \lim_{x \to 0} \frac{\sin^2 x}{(1 - \cos x)} \left(\sqrt{2} + \sqrt{1 + \cos x}\right)$ $= 2 \times \left(\sqrt{2} + \sqrt{2}\right) = 4\sqrt{2}$ $\therefore ab^3 = \left(4\sqrt{2}\right)^2 = 32$

Unle	ashing Potential				
11.	If the minimum distance of centre of the circle $x^2 + y^2 - 4x - 16y + 64 = 0$ from any point on the				
	parabola $y^2 = 4x$ is d, find d^2				
Ans.	(20)				
Sol.	Normal to parabola is $y = mx - 2m - m^3$				
	centre (2, 8) \rightarrow 8 = 2m - 2m - m ³				
	\Rightarrow m = -2				
	\therefore p is (m ² , -2m) =	(4, 4)			
	$\Rightarrow d^2 = 4 + 16 = 20$,			
		\wedge \wedge \rightarrow -	$\rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	
12.	If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, \vec{b}	$=3(i-j+k), a \times c$	c = b & a . c = 3 fin	nd a. $(c \times b - b - c)$	
	(1) 24	(2) –24	(3) 18	(4) 15	
Ans.	(1)				
Sol.	$[\vec{a} \ \vec{c} \ \vec{b}] = (\vec{a} \times \vec{c}) . \vec{b}$	$= \vec{b} ^2 = 27$			
	\therefore we need = 27 – 0	-3 = 24			
13.	Consider the line L	: 4x + 5y = 20. L	et two other lines	are L_1 and L_2 which trisect the line L and	
	pass through origin.	, then tangent of an	gle between lines	L_1 and L_2 is	
	(1) 20	(2) $\frac{30}{10}$	(2) 40	(4) $\frac{10}{41}$	
	(1) $\frac{20}{41}$	$(2){41}$	$(3) \frac{10}{41}$		
Ans.	(2)				
Sol.	Let line L intersect	the lines L_1 and L_2	at P and Q	O.Y	
	$P\left(\frac{10}{3},\frac{4}{3}\right), Q\left(\frac{5}{3},\frac{8}{3}\right)$		141	ins	
	$\therefore m_{OA} = \frac{2}{5}$		1005		
	8		Unlew		
	$m_{OQ} = \frac{8}{5}$		U		
	$\left \frac{8}{2}\right $				
	$\tan\theta = \frac{5 5}{16}$				
	$\tan\theta = \frac{\left \frac{\frac{8}{5} - \frac{2}{5}}{\frac{1}{1 + \frac{16}{25}}}\right }{1 + \frac{16}{25}}$				
	$=\left(\frac{6}{5}\times\frac{25}{41}\right)$				
	. ,				
	$=\frac{30}{41}$				

If ${}^{n-1}C_r = (k^2 - 8) {}^{n}C_{r+1}$, then the range of 'k' is 14. (1) $\mathbf{k} \in \left(2\sqrt{2}, 3\right]$ (2) $\mathbf{k} \in \left(2\sqrt{2}, 3\right)$ $(4) k \in \left(2\sqrt{2}, 8\right)$ $(3) k \in [2, 3)$ Ans. (1) $^{n-1}C_r = (k^2 - 8) \frac{n}{r+1} \cdot {}^{n-1}C_r$ Sol. $\Rightarrow k^2 - 8 = \frac{r+1}{r}$ here $r \in [0, n - 1]$ \Rightarrow r + 1 \in [1, n] \Rightarrow k² - 8 $\in \left|\frac{1}{n}, 1\right|$ $\Rightarrow k^2 \in \left\lceil 8 + \frac{1}{n}, 9 \right\rceil$ y = 2)dx + (4x + 6)(4) 21 \Rightarrow k $\in \left(2\sqrt{2}, 3\right]$ If $\alpha x + \beta y + 9\ln|2x + 3y - 8\lambda| = x + C$ is the solution of (2x + 3y - 2)dx + (4x + 6y - 7)dy = 0, 15. then $\alpha + \beta + \gamma =$ (1) 18(2) 19Ans. (1) Sol. Let 2x + 3y = t $\Rightarrow 2 + 3 \frac{dy}{dx} = \frac{dt}{dx}$ Now $(t-2) + (2t-7) \left(\frac{dt}{dx} \right)$ $\Rightarrow -\frac{(3t-6)}{2t-7} = \frac{dt}{dx} - 2$ $\Rightarrow \frac{dt}{dx} = \frac{t-8}{2t-7}$ $\Rightarrow \int \frac{2t-7}{t-8} dt = \int dx$ $\Rightarrow \int 2 + \frac{9}{t-8} dt = \int dx$ $\Rightarrow 2t + |9ln|t - 8| = x + C$ $\Rightarrow 2(2x+3y)+9\ln|2x+3y-8|=x+C$ $\alpha = 4, \beta = 6, \gamma = 8$

(4)7

 $f: N - \{1\} \rightarrow N$ and f(n) = highest prime factor of 'n', then f is 16.

(1) one-one, onto

(3) many-one, into (4) one-one, into

Ans. (3)

Sol. '4' is not image of any element \Rightarrow into

 $f(10) = 5 = f(15) \Longrightarrow$ many-one

If P(X) represent the probability of getting a '6' in the Xth roll of a die for the first time. Also 17. a = P(X = 3)

(2) many-one, onto

b = P(X \ge 3)
c = P
$$\left(\frac{X \ge 6}{x > 3}\right)$$
, then $\frac{b+c}{a} = ?$

(12) Ans.

Sol.
$$P(X = 3) = \left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6} = a$$

$$P(X \ge 3) = \left(\frac{5}{6}\right)^{2} = b$$

$$P\left(\frac{X \ge 6}{X > 3}\right) = \left(\frac{5}{6}\right)^{2} = c$$

$$\therefore \frac{b+c}{a} = \frac{2\left(\frac{5}{6}\right)^{2}}{\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}} = 12$$
18 If the angle between two vectors $\vec{a} = c\hat{i} - 4\hat{i} - \hat{k}$ and $\vec{b} = c\hat{i} + c\hat{i} + 4\hat{k}$ is acute then

- (3) 6 (15) $\alpha_1 + \alpha_j + 4k$ is acute then find least 18. If the angle betwe positive integral value of α .
 - (1)4(2)5
- (2) Ans.
- \vec{a} . $\vec{b} > 0$ Sol. $\Rightarrow \alpha^2 - 4\alpha - 4 > 0$ $\alpha < (2 - 2\sqrt{2})$ or $\alpha > (2 + 2\sqrt{2})$
- If $S = \{1, 2, \dots, 10\}$ and M = P(S), 19. If ARB such that $A \cap B \neq \phi$ where $A \in M$, $B \in M$ Then (1) R is reflexive and symmetric (2) Only symmetric (3) Only reflexive (4) Symmetric and transitive
- Ans. (2)

 $\phi \cap \phi = \phi$ $\Rightarrow (\phi, \phi) \notin R$ \Rightarrow not reflexive. Sol. If $A \cap B \neq \phi$ \Rightarrow B \cap A $\neq \phi \Rightarrow$ Symmetric If $A \cap B \neq \phi$ and $B \cap C \neq \phi \implies A \cap C = \phi$ for example $A = \{1, 2\}$ $B = \{2, 3\}$ $C = \{3, 4\}$ 20. If four points (0, 0), (1, 0), (0, 1), (2k, 3k) are concyclic, then k is $(1) \frac{4}{13}$ $(2) \frac{5}{12}$ $(3) \frac{7}{13}$ $(4) \frac{9}{12}$ Ans. (2) Sol. Equation of circle is x(x-1) + y(y-1) = 0 $x^{2} + y^{2} - x - y = 0$ B(2k, 3k) Potential $\Rightarrow 4k^2 + 9k^2 - 2k - 3k = 0$ $\Rightarrow 13k^2 = 5k$ \Rightarrow k = 0, $\frac{5}{13}$ $\therefore k = \frac{5}{13}$ If f(x) is differentiable function satisfying f(x) – f(y) $\ge \log \frac{x}{y} + x - y$, then find $\sum_{N=1}^{20} f'\left(\frac{1}{N^2}\right)$ 21. (2890)Ans. Let x < y Sol. Let x > y $\frac{f(x) - f(y)}{x - v} \le \frac{\log x - \log y}{x - y} + 1$ $\lim_{y \to x} \frac{f(x) - f(y)}{x - y} \ge \frac{\log x - \log y}{x - y} + 1$ $f'(x^{-}) \ge \frac{1}{x} + 1$ $f'(x^+) \le \frac{1}{2} + 1$ \Rightarrow f'(x⁻) = f'(x⁺) as f(x) is differentiable function $f'(x) = \frac{1}{x} + 1$ $f'\left(\frac{1}{N^2}\right) = N^2 + 1$ $\sum_{N=1}^{20} f'\left(\frac{1}{N^2}\right) = \sum (N^2 + 1) = \frac{20 \times 21 \times 41}{6} + 20 = 2890$

22.	Let $\frac{\mathrm{dx}}{\mathrm{dt}} + \mathrm{ax} = 0$ and	$d \frac{dy}{dt} + by = 0 wh$	here $y(0) = 1, x(0) =$	= 2, and $x(t) = y(t)$, then t is
	(1) $\frac{\ln 3}{a-b}$	(2) $\frac{\ln 2}{b-a}$	$(3) \ \frac{\ln 2}{a-b}$	$(4) \ \frac{\ln 3}{b-a}$
Ans.	(3)			
Sol.	$\frac{\mathrm{d}x}{\mathrm{d}t} + \mathrm{a}x = 0$			
	$\Rightarrow \ln x = -at + c$			
	$x(0) = 2 \Longrightarrow c = ln2$			
	$\therefore x = 2e^{-at}$			
	$\frac{\mathrm{d}y}{\mathrm{d}t} + \mathrm{b}y = 0 \implies y =$	e ^{-bt}		. 0.
	$\mathbf{x}(t) = \mathbf{g}(t)$			
	$2e^{-at} = e^{-bt}$			
	$\Rightarrow t = \frac{\ln 2}{a - b}$			E atial

If H(a, b) is the orthocentre of $\triangle ABC$ where A(1, 2), B(2,3) & C(3, 1), then find $\frac{36I_1}{I_2}$ if $I_1 = \int_a^b x \sin(4x - x^2) dx$ and $I_2 = \int_a^b \sin(4x - x^2) dx$ (72) $\triangle ABC$ is isosceles 23.

$$I_1 = \int_{a}^{b} x \sin(4x - x^2) dx$$
 and $I_2 = \int_{a}^{b} \sin(4x - x^2) dx$

Ans.

Sol. \triangle ABC is isosceles

 \Rightarrow H lies on angle bisector passing through (3, 1) which is x + y = 4

$$\therefore a+b=4$$

Now apply
$$(a + b - x)$$
 in I_1
 $2I_1 = \int_a^b 4\sin(4x - x^2) dx$
 $\Rightarrow 2I_1 = 4I_2$
 $\Rightarrow \frac{I_1}{I_2} = 2$
 $\therefore \frac{36I_1}{I_2} = 72$

 $2^{\frac{\sin(x-3)}{x-[x]}}$, x > 3 $f(x) = \begin{cases} -\frac{a(x^2 - 7x + 12)}{b |x^2 - 7x + 12|} , & x < 3. \text{ Find number of ordered pairs (a, b) so that } f(x) \text{ is continuous} \\ & x - 3 \end{cases}$ 24. at x = 3Ans. (1) Sol. LHL = RHL = f(3) $-\frac{a}{b} = 2^1 = b$ \Rightarrow b = 2 and a = -4 \Rightarrow (a,b) = (-4,2) es such that Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 2 & 0 \end{bmatrix}$, $B = [B_1 B_2 B_3]$ where B_1, B_2, B_3 are column matrices such that 25. $AB_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AB_{2} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, AB_{3} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ α = sum of diagonal elements of B $\beta = |\mathbf{B}|$, then find $|\alpha^3 + \beta^3|$ (1.125)Ans. $\mathbf{A}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 1 & -2 & 0 \end{bmatrix}$ Sol. $\mathbf{B}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \mathbf{B}_2 = \begin{bmatrix} 0\\1\\2\\2 \end{bmatrix}, \mathbf{B}_3 = \begin{bmatrix} 2\\-5\\-2\\-1 \end{bmatrix}$ $Tr(B) = -\frac{1}{2}$ $|{\bf B}| = -1$ $\therefore a = -\frac{1}{2}, b = -1$ $|\alpha^3 + \beta^3| = \frac{9}{8} = 1.125$

If $\cos(2x) - a \sin x = 2a - 7$ has a solution for $a \in [p, q]$ and $r = \tan 9^\circ + \tan 63^\circ + \tan 81^\circ + \tan 27^\circ$, **26**. then p.q. r = ?(3) $30\sqrt{5}$ (4) $48\sqrt{5}$ (1) $40\sqrt{5}$ (2) $32\sqrt{5}$ Ans. (4) $2(\sin^2 x - 4) + a(\sin x + 2) = 0$ Sol. $2(\sin x - 2) + a = 0$ \Rightarrow a = 4 - 2 sinx a ∈ [2, 6] Also, $\mathbf{r} = \left(\tan 9^\circ + \frac{1}{\tan 9^\circ}\right) + \left(\tan 27^\circ + 1\frac{1}{\tan 27^\circ}\right)$ $=\frac{2}{\sin 18^\circ} + \frac{2}{\sin 54^\circ}$ Unleashing Potential $=\frac{2\times4}{\sqrt{5}-1}+\frac{2\times4}{\sqrt{5}+1}$ $=\frac{8\times 2\sqrt{5}}{4}=4\sqrt{5}$ \therefore pqr = $48\sqrt{5}$