JEE-Mains-27-01-2024 [Memory Based] [Morning Shift]

Physics

Question: Spherometer cannot measure which of the following quantities?

Options:

(a) Radius of curvature of convex lens
(b) Radius of curvature of concave lens
(c) thickness of thin plates.
(d) specific rotation of liquids

Answer: (d)
Question: Find Moment of Inertia of Massless square frame of side length 2 m with mass of 1 Kg on Each Vertex about axis passing through a side

Options:
(a) $8 \mathrm{kgm}^{2}$
(b) $2 \mathrm{kgm}^{2}$
(c) $4 \mathrm{kgm}^{2}$
(d) $3 \mathrm{kgm}^{2}$

Answer: (a)

Question: A particle is moving with initial speed $(5 \hat{i}+2 \hat{j}) \frac{m}{s}$ and a constant acceleration of $(2 \hat{i}+3 \hat{j}) \frac{m}{s^{2}}$ starting from origin. After sometime it is observed that it has moved by a distance 84 m along the x -axis. Find the final speed

Options:

(a) $19 \hat{i}+23 \hat{j}$
(b) $13 \hat{i}+23 \hat{j}$
(c) $19 \hat{i}+13 \hat{j}$
(d) $13 \hat{i}+13 \hat{j}$

Answer: (a)

Question: A beaker is filled with two liquids each of height 6 cm if refractive indices of two liquids are $\mu_{1}=8 / 3$ and $\mu_{2}=5 / 3$ then find the apparent depth of a coin kept at the bottom of the container

Options:

(a) 4.85 cm
(b) 5.85 cm
(c) 6.85 cm
(d) 7.85 cm

Answer: (b)

Question: If radius of electron in 3rd stationary orbit is R , radius of electron in 4th stationary orbit is
Options:
(a) $\frac{25}{9} R$
(b) $\frac{16}{9} R$
(c) $\frac{9}{16} R$
(d) $\frac{9}{25} R$

Answer: (b)
Question: A particle executing SHM has amplitude $A=4 \mathrm{~m}$ and maximum speed of $10 \mathrm{~m} / \mathrm{s}$. Find its distance from mean position which its speed is $6 \mathrm{~m} / \mathrm{s}$.

Options:

(a) 3.0
(b) 3.2
(c) 3.4
(d) 3.6

Answer: (b)

Question: Resistance R having length L is cut into five parts and connected in parallel. The effective resistance now is?

Options:

(a) R
(b) 5 R
(c) $\mathrm{R} / 5$
(d) R/25

Answer: (d)

Question: A rectangular loop of length 2.5 m and breadth 2 m is present in a magnetic field of 5 tesla making an angle of 60° with the plane of the loop. The loop is pulled out from the field slowly in 10 seconds. Find the EMF developed.

Options:

(a) 2.16 volts
(b) 1 volt
(c) 1.16 volt
(d) 3 volts

Answer: (a)

Question: Two parallel infinite wires are carrying current of 10 A in the opposite directions. Distance between the wires is 5 cm . Find the magnetic field at the midpoint between the wires.

Options:

(a) $1.6 \times 10^{-4} \mathrm{~T}$
(b) $4 \times 10^{-4} \mathrm{~T}$
(c) $2 \times 10^{-4} \mathrm{~T}$
(d) $6 \times 10^{-4} \mathrm{~T}$

Answer: (a)
Question: Find percentage volume change of a liquid at depth of 4000 m under water as compared to on the surface. Bulk modulus of the liquid is $2 \times 10^{9} \mathrm{~Pa}$.
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
Options:
(a) $1 / 2 \%$
(b) 2%
(c) 1%
(d) 0.25%

Answer: (b)
Question: If Charge +q is Kept at the centre, find the Tension in the Ring

Question: After Collision Blocks stick. Find there Common Velocity

(a) $4 / 3 \mathrm{~m} / \mathrm{s}$
(b) $16 / 3 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $9 / 5 \mathrm{~m} / \mathrm{s}$

Answer: (c)
Question: In a meter bridge experiment when a wire of length 10 cm and cross section area $10^{-4} \mathrm{~m}^{2}$ is used in place of unknown resistor, then the balancing length is forced to be 60 cm . Find the resistivity of the wire

Options:

(a) $3 \times 10^{-3} \Omega-\mathrm{m}$
(b) $4 \times 10^{-3} \Omega-\mathrm{m}$
(c) $10^{-3} \Omega-\mathrm{m}$
(d) $2 \times 10^{-3} \Omega-\mathrm{m}$

Answer: (a)
Options: In the following circuit, find the charge on the positive plate of the capacitor after long time given $\mathrm{R}_{1}=1 \Omega, \mathrm{R}_{2}=6 \Omega, \mathrm{R}_{3}=2 \Omega, \mathrm{R}_{4}=4 \Omega \mathrm{C}=150 \mu \mathrm{~F}, \mathrm{~V}=10 \mathrm{~V}$

(a) $200 \mu \mathrm{~F}$
(b) $300 \mu \mathrm{~F}$
(c) $400 \mu \mathrm{~F}$
(d) $500 \mu \mathrm{~F}$

Answer: (c)
Question: If the displacement of a particle is given by $\vec{S}=2 t^{2} \hat{i}+5 \hat{j}$, then find the velocity of $\mathrm{t}=1$ second

Options:

(a) $4 \hat{i}+5 \hat{j}$
(b) $2 \hat{i}+5 \hat{j}$
(c) $4 \hat{i}$
(d) $5 \hat{j}$

Answer: (c)

Question: Find the intensity of an electromagnetic wave with equation its electric field component as $\mathrm{E}=200 \sin (1.5 \times 107 \mathrm{t}-0.05 \mathrm{x}) \mathrm{N} / \mathrm{C}$
(a) 53
(b) 67
(c) 84
(d) 43

Answer: (a)

Question: If a monoatomic gas molecule has a KE of 414 eV , then find the temperature of the gas if $K_{B}=1.3 \times 10^{-23}$

Options:

(a) 340 K
(b) 3400 K
(c) $3400{ }^{\circ} \mathrm{C}$
(d) $340{ }^{\circ} \mathrm{C}$

Answer: (b)

Question: If diameter of earth's becomes half without changing its mass the value of acc due to gravity on surface become
(a) 2 g
(b) $g / 2$
(c) $g / 4$
(d) 4 g

Answer: (d)
Question: A charged particle moves in a region with constant velocity which combination of electric field and magnetic field is possible
(i) $E \neq 0 \quad B \neq 0$
(ii) $\mathrm{E}=0 \quad \mathrm{~B}=0$
(iii) $\mathrm{E}=0 \quad \mathrm{~B} \neq 0$
(iv) $E \neq 0 \quad B=0$

Options:
(a) (i), (ii) and (iii) only
(b) (i) and (ii) only
(c) (i) and (iii) only
(d) (ii) and (iii) only

Answer: (a)
Question: In an isothermal expansion initial pressure is $\mathrm{P}=800 \mathrm{KPa}$ and initial volume is 30 dm^{3} if the final volume is $45 \mathrm{dm}^{3}$, find the heat absorbed in the process
$[\ln (3)=1.099, \ln (2)=0.693]$
(a) 8790
(b) 4350
(c) 2088
(d) 9731

Answer: (d)

Question: A Convex Lens of Focal length 40 cm focus a distant light on electrochemical cell and current I is produced as a results. If a convex lens of focal length 20 cm is used current will change to [assuming both lenses have same diameter]

Options:

(a) I
(b) 2 I
(c) $\mathrm{I} / 2$
(d) I/4

Answer: (a)

Question: A $\operatorname{Pn~} \mathrm{S}_{\mathrm{m}}$ has a refractive index of $\mu=\cot \frac{A}{2}$. Find the minimum deviation if it is kept in air. A is angle of Prism

Options:

(a) $\frac{\pi}{2}-\frac{A}{2}$
(b) $\pi-2 \mathrm{~A}$
(c) $\pi-\mathrm{A}$
(d) $\frac{\pi}{2}-A$

Answer: (b)
Question 23: If a charge of $1 \mu \mathrm{C}$ is placed at the origin the potential difference between points $A(\sqrt{3}, \sqrt{3})$ and $B(\sqrt{6}, 0)$ is

Options:

(a) $1 \mu \mathrm{~J}$
(b) $2 \mu \mathrm{~J}$
(c) $3 \mu \mathrm{~J}$
(d) 0

Answer: (d)
Question: Two particles with same KE are having masses of 4 gram and 25 gram respectively. Find the ratio of there linear momentum

Options:

(a) $2: 5$
(b) $5: 2$
(c) $4: 25$
(d) $25: 4$

Answer: (a)

Question: Read the following statements
S 1 : Viscosity of gases is more than liquids
S2: Addition of insoluble impurities decreases surface tension

Options:

(a) Both are correct
(b) Only S1 is correct
(c) Only S2 is correct
(d) None is correct

Answer: (c)
Question: Read the following statements
S1: Planck constants and Angular momentum have same dimension
S2: Moment of the force and linear momentum have same dimension
Options:
(a) Both are correct
(b) Only S1 is correct
(c) Only S2 is correct
(d) None is correct

Answer: (b)

Question: Which of the following option shows the diode in the reverse biased mode Options:
(a)

(c)

Answer: (b)

