

PHYSICS

Answer (3)

Sol. $I = \sum m_i \cdot r_i^2$

 $= 0 + 0 + 1(2\sin 45^{\circ})^2 \times 2 \text{ kg} \cdot \text{m}^2$

= 4 kg·m²

- A rod of length *l* having resistance *R*, is cut into two equal parts. These parts are connected in parallel then new resistance shall be
 - (1) R
 - (2) $\frac{R}{2}$
 - (3) $\frac{R}{4}$
 - (4) 2*R*

Answer (3)

Sol.
$$R = f \frac{l}{A}$$
 $R \propto l$
 $R \approx l$
 $R \approx \frac{l}{2}$
 $R \approx \frac{l}{2$

8. **Statement-I**: Linear momentum and moment of force have same dimensions.

Statement-II : Planck's constant and angular momentum have same dimension.

- (1) Statement-I is correct while statement-II is false
- (2) Statement-I is false while statement-II is correct
- (3) Both statements are correct
- (4) Both statements are false

Answer (2)

Sol. Linear momentum (p) \Rightarrow [MLT⁻¹]

Angular momentum (L) \Rightarrow [ML²T⁻¹]

Torque \Rightarrow [ML²T⁻²]

Planck's constant \Rightarrow [ML²T⁻¹]

9. In which of the following circuits the diode is reverse biased?

Answer (4)

Sol. For reverse bias $V_P < V_N$

10. A prism has a refractive index $\cot\left(\frac{A}{2}\right)$, where A is

the refracting angle of the prism. The minimum deviation due to this prism is

(1)
$$\pi - 3A$$
 (2) $\pi - 2A$

(3) A (4)
$$\frac{A}{2}$$

Answer (2)

Sol.
$$\delta_{\min} = 2\sin^{-1}\left[\mu\sin\frac{A}{2}\right] - A$$

= $2\sin^{-1}\left[\cot\left(\frac{A}{2}\right)\sin\frac{A}{2}\right] - A$
= $\pi - 2A$

- A particle performing simple harmonic motion in such that it's amplitude is 4 m and speed of particle at mean position is 10 m/s. Find the distance of particle from mean position where velocity became 5 m/s.
 - (1) $\sqrt{3}$ m (2) $2\sqrt{3}$ m (3) $\frac{\sqrt{3}}{2}$ m (4) $\frac{1}{\sqrt{2}}$ m

Answer (2)

Sol.
$$v = \omega \sqrt{A^2 - x^2}$$

In 1st case : at $x = 0$, $v = 10$ m/s
then $10 = \omega \sqrt{(4)^2 - 0^2}$
 $\omega = \frac{10}{4} = \frac{5}{2}$ rad/s
In 2nd case :
 $5 = \frac{5}{2} \sqrt{(4)^2 - x^2}$

 $x = 2\sqrt{3}$ m

12. Find charge on capacitor in the given circuit at steady state.

Answer (1)

Sol.
$$V_A = 10 - \frac{10}{3} = \frac{20}{3} \vee$$

 $V_B = 10 - \frac{3}{7} \times 10 = \frac{40}{7} \vee$
 $V_A - V_B = 20 \left[\frac{1}{3} - \frac{2}{7} \right]$
 $= \frac{20}{21} \vee$

$$Q = CV_{AB}$$
$$= 6 \times \frac{20}{21} \mu C$$
$$= \frac{40}{7} \mu C$$

13. A proton having velocity \vec{v}_0 passes through a region having electric field *E* and magnetic field *B*. If the velocity of proton does not change, then which of the following may be true?

(a) $E = 0, B = 0$	(b) $E = 0, B \neq 0$
(c) $E \neq 0, B = 0$	(d) $E \neq 0, B \neq 0$
(1) a, b, c, d	(2) a
(3) a, b, d	(4) a, b

Answer (3)

Sol.
$$\vec{F}_E = q\vec{E}$$

$$\vec{F}_{B} = q(\vec{v} \times \vec{B})$$

Case *b* is correct when $\vec{v} \parallel \vec{B}$

Case *d* is correct when $\vec{E} \perp \vec{B} \perp \vec{v}$ and $v = \frac{E}{B}$

- 14. A particle has initial (t = 0) velocity $\vec{u} = 5\hat{i}$ and is at origin at this instant. Its acceleration is given by $(3\hat{i} + 4\hat{j})$. When particle's *x* co-ordinate is 16 units, then its speed is
 - (1) 13 units (2) $\sqrt{161}$ units
 - (3) 12 units (4) $\sqrt{185}$ units

Answer (4)

Sol.
$$S = ut + \frac{1}{2} at^2$$

 $\Rightarrow 16 = 5t + \frac{3}{2}t^2$
 $\Rightarrow t = 2$
 $\Rightarrow \vec{v} = \vec{u} + \vec{a}t = 11\hat{i} + 8\hat{j}$
15. A spherometer is used to

- 15. A spherometer is used to measure
 - (1) Radius of curvature of a lens
 - (2) Length of rod
 - (3) Density of a solid
 - (4) Viscosity of a liquid

Answer (1)

- Sol. A spherometer is an instrument used for precise measurement of the radius of curvature of curved surface.
- 16. A particle performing simple harmonic motion according to $y = A \sin \omega t$. Then its kinetic energy (K.E.), potential energy (P.E.) and speed (V) at

position
$$y = \frac{A}{2}$$
 are

(1) K.E. = $\frac{kA^2}{8}$ $\mathsf{P.E.} = \frac{3kA^2}{8}$ $V = \frac{A}{3}\sqrt{\frac{k}{m}}$ (2) K.E. = $\frac{3kA^2}{8}$ $\mathsf{P.E.} = \frac{kA^2}{8}$ $V = \frac{A}{2}\sqrt{\frac{3k}{m}}$ (3) K.E. = $\frac{3kA^2}{8}$ $\mathsf{P}.\mathsf{E}.=\frac{kA^2}{4}$ $V = A \sqrt{\frac{3k}{m}}$ (4) K.E. = $\frac{kA^2}{4}$ $\mathsf{P.E.} = \frac{3kA^2}{8}$ $V = \frac{A}{4} \sqrt{\frac{3k}{m}}$ Answer (2)

Sol.
$$V = \omega \sqrt{A^2 - x^2}$$
, $k = m\omega^2$, $\omega = \sqrt{\frac{k}{m}}$

$$V = \sqrt{\frac{k}{m}(A^2 - x^2)}$$

K.E. $= \frac{1}{2}mv^2$
 $= \frac{1}{2}m.\frac{k}{m}(A^2 - x^2)$
 $= \frac{k}{2}\left(A^2 - \frac{A^2}{4}\right)$
 $= \frac{3kA^2}{8}$
P.E. $= \frac{1}{2}kx^2$
 $= \frac{1}{2}k.\frac{A^2}{4}$
 $= \frac{kA^2}{8}$
Speed (V) $= \sqrt{\frac{k}{m}\left(A^2 - \frac{A^2}{4}\right)}$
 $= \sqrt{\frac{k}{m}\left(\frac{3A^2}{4}\right)}$
 $= \left(\sqrt{\frac{3k}{m}}\right).\frac{A}{2}$

17. What should be the elevation of outer track of the train to move in a circular path of radius R, width of the track is w (< < R) and speed of the train is v? (Neglect friction)

(1)
$$\frac{v^2 w}{Rg}$$

(2)
$$\frac{v^2 w}{2Rg}$$

(3)
$$\frac{gwv^2}{R}$$

(4)
$$\frac{R}{gwv^2}$$

swer (1)

Nsin
$$\theta = \frac{mv^2}{R}$$

 $N\cos\theta = mg$

$$\tan\theta = \frac{v^2}{Rg} = \frac{h}{w}$$

$$\therefore \quad h = \frac{v^2 w}{Rg}$$

- 18. Out of air and liquid, which substance is more viscous?
 - (1) Air
 - (2) Liquid
 - (3) Both have same viscosity
 - (4) None of these

Answer (2)

- **Sol.** In general, liquids are more viscous than air because of higher density and intermolecular forces.
- 19. A metallic frame of given dimension has area vector at 60° with external magnetic field as shown. The frame is taken out from the field in 10 seconds. Find arrange emf induced in the frame.

Answer (1)

Sol. $\phi = \vec{B} \cdot \vec{A}$

$$\Rightarrow \quad \varepsilon = \frac{\Delta \phi}{\Delta t} = \frac{10}{10} \text{ V} = 1 \text{ V}$$

20. An electromagnetic wave is given as E = 200 sin(1.5x – 4.5 × 10⁸ *t*), here *E* is electric field in N/C. If energy density in electromagnetic field is given as N × 10⁻⁸ J/m³. Then *N* is

 $(\varepsilon_0 = 9 \times 10^{-12} \text{ SI units.})$

- (1) 9
- (2) 18
- (3) 36
- (4) 72
- Answer (2)

Sol.
$$\overline{\varepsilon} = \frac{1}{2} \varepsilon_0 E_{ms}^2 + \frac{B_{ms}^2}{2\mu_0}$$

 $= \varepsilon_0 E_{ms}^2 = \frac{1}{2} \varepsilon_0 E_0^2$
 $= \frac{1}{2} \times 9 \times 10^{-12} \times 200 \times 200$
 $= \frac{36}{2} \times 10^{-8} = 18 \times 10^{-8} \text{ J/m}^3$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. In the given meter bridge circuit, null point is found

at 60 cm from end *A*. The unknown resistance *S* (in Ω) is

Answer (90.00)

Sol.
$$\frac{S}{60} = \frac{60}{(100 - 60)}$$

22. A particle is moving in one dimension, its displacement – time relation is given as $s = (2t^2 + 5)$ where s is in meters and t is in seconds. Find its velocity (in m/s) at t = 1 second.

Answer (04.00)

- **Sol.** $s = 2t^2 + 5$
 - $v = \frac{ds}{dt} = 4t$

at t = 1, v = 4 m/s

23. A sphere of small size is at the bottom of a lake of depth 200 m. Due to pressure its fractional change in volume is $\alpha \times 10^{-7}$. What is value of α , if bulk modulus of sphere is 5×10^{12} Pa? (Use g = 10 m/s²)

Answer (04.00)

Sol.
$$B = \frac{\left|\Delta P\right|}{\left|\frac{\Delta V}{V}\right|}$$
$$\left|\frac{\Delta V}{V}\right| = \frac{\left|\Delta P\right|}{B} = \frac{h\rho g}{B} = \frac{200 \times 10^3 \times 10}{5 \times 10^{12}} = 40 \times 10^{-8}$$
$$= 4 \times 10^{-7}$$

$$\Rightarrow \alpha = 4$$

24. A ring has a uniformly distributed charge of 2π C and radius of 3 cm. A charge 10^{-6} C is placed at the centre of the ring. Tension developed in the ring is 10^{\times} N. Find *x*.

25. Two slabs of same thickness of 6 cm each are placed over one other as shown on table.

Apparent depth of table surface is N cm. (N is nearest integer)

Answer (06.00)

Sol.
$$h_{app} = \frac{t_1}{\mu_1} + \frac{t_2}{\mu_2} = \frac{6}{7} \times 3 + \frac{6}{5} \times 3$$

= $\frac{18}{7} + \frac{18}{5}$
= 2.57 + 3.60 = 6.17 cm $\Rightarrow N = 06$

26.

27.

28.

29. 30.

- 7 -