PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A body of man 100 kg travelled 10 m before coming to rest. If $\mu=0.4$, work done against friction is (motion is happening on horizontal surface, take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 4500 J
(2) 5000 J
(3) 4200 J
(4) 4000 J

Answer (4)
Sol. $\frac{v^{2}}{2 a}=s \quad(a=\mu g)$
$v^{2}=2 \times \mu g \mathrm{~s}$
$v^{2}=2 \times(.4) \times 10 \times 10$
$v^{2}=80$
$w_{f}=\Delta k$
$=-\frac{1}{2} \times 100 \times 80$
$w_{f}=-4000$
2. If an object is having same weight at same distance above and below the surface of earth, find its distance from surface of earth.
(1) $\frac{R}{2}$
(2) $(\sqrt{5}-1) \frac{R}{2}$
(3) $(\sqrt{3}-1) \frac{R}{2}$
(4) $(\sqrt{5}-1) R$

Answer (2)

Sol. $\frac{G M m}{(R+x)^{2}}=\frac{G M m(R-x)}{R^{3}}$
$\Rightarrow R^{3}=(R+x)^{2}(R-x)$
$\Rightarrow R^{3}=\left(R^{2}-x^{2}\right)(R+x)$
$\Rightarrow x^{2}+R x-R^{2}=0$
$\therefore x=\frac{-R \pm \sqrt{R+4 R^{2}}}{2}$
$x=\frac{(\sqrt{5}-1)}{2} R$
3. Consider the two statements :

Statement-1 : A capillary tube is first dipped in hot water and then dipped in cold water. The rise is higher in hot water.

Statement-2 : Capillary tube is first dipped in cold water and then dipped in hot water. The rise is higher in cold water.
(1) Statement 1 is true and statement- 2 is false
(2) Statement- 1 is false and statement-2 is true
(3) Both statements are true
(4) Both statements are false

Answer (2)

Sol. $h=\frac{2 S \cos \theta}{\rho g R}$
as $T \uparrow, S \downarrow$
The correct answer is Option (2).
4. If a particle starting from rest having constant acceleration covers distance S_{1} in first ($p-1$) seconds and S_{2} in first p seconds, then determine time for which displacement is $S_{1}+S_{2}$
(1) $\sqrt{2 p^{2}+1-2 p}$
(2) $\sqrt{2 p^{2}+1+2 p}$
(3) $\sqrt{(p-1)^{2}-p}$
(4) $2 p$

Answer (1)
Sol. $S_{1}=\frac{1}{2} a(p-1)^{2}$
$S_{2}=\frac{1}{2} a p^{2}$
$S_{1}+S_{2}=\frac{1}{2} a\left[(p-1)^{2}+p^{2}\right]=\frac{1}{2} a t^{2}$
$t=\sqrt{2 p^{2}+1-2 p}$
5. de-Broglie wavelength of a proton and an electron is same. The ratio of kinetic energy of electron to that of proton is
(1) 1
(2) 1835
(3) $\frac{1}{1867}$
(4) 933.5

Answer (2)
Sol. $\frac{h}{p_{1}}=\frac{h}{p_{2}}$

$$
\Rightarrow \quad \sqrt{2 m_{1} k_{1}}=\sqrt{2 m_{2} k_{2}}
$$

$$
\Rightarrow \frac{k_{2}}{k_{1}}=\frac{m_{1}}{m_{2}}=1835
$$

6. If ratio of centripetal acceleration of two particles moving on the same path is $3: 4$. Find the ratio of their tangential velocities.
(1) $2: \sqrt{3}$
(2) $\sqrt{3}: 2$
(3) $\sqrt{3}: 1$
(4) $\sqrt{2}: 1$

Answer (2)

Sol. $a_{c}=\frac{v^{2}}{r}, \frac{\left(a_{c}\right)_{1}}{\left(a_{c}\right)_{2}}=\left(\frac{v_{1}}{v_{2}}\right)^{2}$

$$
\frac{3}{4}=\left(\frac{v_{1}}{v_{2}}\right)^{2} \rightarrow \frac{v_{1}}{v_{2}}=\sqrt{3}: 2
$$

7. A capacitor having capacitance of $100 \mu \mathrm{~F}$ is charged with a potential difference of 12 V is connected to an inductor of inductance 10 mH . Find the maximum current through the inductor.
(1) 2 A
(2) 1.6 A
(3) 2.4 A
(4) 1.2 A

Answer (4)

Sol. $I=Q_{0 . \omega}$

$$
\begin{aligned}
& =\frac{C V}{\sqrt{L C}}=V \sqrt{\frac{C}{L}} \\
& =12 \sqrt{\frac{100 \times 10^{-6}}{10 \times 10^{-3}}} \\
& =1.2 \mathrm{~A}
\end{aligned}
$$

8. A square loop of resistance 16Ω is connected with battery of 9 V and internal resistance of 1Ω. In steady state, find energy stored in capacitor of capacity $C=4$ μF as shown (at steady state current divides symmetrically)

(1) $51.84 \mu \mathrm{~J}$
(2) $12.96 \mu \mathrm{~J}$
(3) $25.92 \mu \mathrm{~J}$
(4) $103.68 \mu \mathrm{~J}$

Answer (3)

Sol. Equivalent circuit

$i=\frac{9}{4+1}=1.8 \mathrm{~A}$
$\Rightarrow \frac{i}{2}=0.9 \mathrm{~A}$

$\left(V_{P}-V_{Q}\right)=0.9 \times 6-0.9 \times 2$
$V_{C}=3.6 \mathrm{~V}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \times 4 \times 3.6 \times 3.6 \mu \mathrm{~J}$
$=25.92 \mu \mathrm{~J}$
9. A gas undergoes a cyclic process $A B C A$ as shown. Find the work done by the gas for $A \longrightarrow B \longrightarrow C$.

(1) 1800 J
(2) 1200 J
(3) 3600 J
(4) 600 J

Answer (2)

Sol. Work = Area

$$
\begin{aligned}
\Rightarrow \quad W & =\frac{1}{2} \times 600 \times 4 \\
& =1200 \mathrm{~J}
\end{aligned}
$$

10. If a biconvex lens of material of refractive index 1.5 has focal length 20 cm in air, then its focal length when it is submerged in a medium of refractive index 1.6 is
(1) -160 cm
(2) 160 cm
(3) 1.6 cm
(4) -16 cm

Answer (1)

Sol. $\frac{1}{20}=(1.5-1)\left(\frac{2}{R}\right)$
$R=20 \mathrm{~cm}$
$\frac{1}{f^{\prime}}=\left(\frac{1.5}{1.6}-1\right)\left(\frac{2}{R}\right)$
$=\frac{-1}{16} \times \frac{2}{20}$
$f^{\prime}=-160 \mathrm{~cm}$
11. If electric current passing through a conductor varies with time as $I=I_{0}+\beta t$, where $I_{0}=20 \mathrm{~A}, \beta=3 \mathrm{~A} / \mathrm{s}$, then find charge flow through conductor in first 10 sec.
(1) 400 C
(2) 500 C
(3) 200 C
(4) 350 C

Answer (4)
Sol. $\Rightarrow d=\int I . d t=\int_{0}^{10}(20+3 t) d t$

$$
=(20 t)_{0}^{10}+3\left(\frac{t^{2}}{2}\right)_{0}^{10}=350 \mathrm{C}
$$

12. Consider a series of steps as shown. A ball is thrown from O. Find the minimum speed of directly jump to $5^{\text {th }}$ step.

(1) $5(\sqrt{2}+1) \mathrm{m} / \mathrm{s}$
(2) $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) $5 \sqrt{\sqrt{2}+1} \mathrm{~m} / \mathrm{s}$
(4) $6 \sqrt{\sqrt{3}+1} \mathrm{~m} / \mathrm{s}$

Answer (3)

Sol. $y=x \tan \theta-\frac{g x^{2}}{2 v^{2} \cos ^{2} \theta}$
$(2.5,2.5)$ must lie on this
$\Rightarrow 1=\tan \theta-\frac{g \times 2.5}{2 v^{2} \cos ^{2} \theta}$
$\Rightarrow \frac{25}{2 v^{2} \cos ^{2} \theta}=\tan \theta-1$
$\Rightarrow v^{2}=\frac{25}{2}\left\{\frac{1+\tan ^{2} \theta}{\tan \theta-1}\right\}$
$\Rightarrow v_{\text {min }}=5 \sqrt{\sqrt{2}+1}$
[Happens when $\tan \theta=\sqrt{2}+1$]
13. An electron is moving with speed of $1 \mathrm{~m} / \mathrm{s}$ at distance of 1 m from a large sheet of charge with density $\sigma \mathrm{C} / \mathrm{m}^{2}$. Find maximum value of σ such that electron hit the sheet after 1 sec .

(mass of electron $9 \times 10^{-31} \mathrm{~kg}$, permittivity of free space $\varepsilon_{0}=9 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$)
(1) $4.05 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$
(2) $8.10 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$
(3) $4.05 \times 10^{24} \mathrm{C} / \mathrm{m}^{2}$
(4) $2.02 \times 10^{-20} \mathrm{C} / \mathrm{m}^{2}$

Answer (1)

Sol. For maximum value of σ, initially, electron must move away from plate.
$u t+\frac{1}{2} a t^{2}=s$
$t=1 \quad u=1 \mathrm{~m} / \mathrm{s} \quad s=-1 \mathrm{~m}$
$1 \times 1-\frac{1}{2} a \times 1^{2}=-1$
$\Rightarrow \quad a=4 \mathrm{~m} / \mathrm{s}^{2}$

$$
\frac{q E}{m}=4
$$

$\frac{q \sigma}{2 \varepsilon_{0} m}=4$

$$
\begin{aligned}
\sigma & =\frac{4 \times 2 \times 9 \times 10^{-12} \times 9 \times 10^{-31}}{1.6 \times 10^{-19}} \\
& =\frac{8 \times 81}{1.6} \times 10^{-24} \\
& =4.05 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}
\end{aligned}
$$

14. In the voltage regulator circuit shown below, the reverse breakdown voltage of zener diode is 3 V . Find the current through zener diode.

(1) 7 mA
(2) 1.5 mA
(3) 5.5 mA
(4) 10 mA

Answer (3)
Sol.
$i_{\text {battery }}=\frac{10-3}{1000}=7 \mathrm{~mA}$
${ }^{i} 2 \mathrm{k} \Omega=\frac{3}{2000}=1.5 \mathrm{~mA}$
$i_{z}=(7-1.5) \mathrm{mA}$
$=5.5 \mathrm{~mA}$
15. Consider the circuit shown. Galvanometer resistance is 10Ω and current through galvanometer is 3 mA . Find the resistance of shunt.

(1) $10^{-3} \Omega$
(2) $7.5 \times 10^{-3} \Omega$
(3) $6.75 \times 10^{-3} \Omega$
(4) $3.75 \times 10^{-3} \Omega$

Answer (4)

Sol. Since G and S are in parallel

$$
\begin{aligned}
& \Rightarrow V_{\mathrm{G}}=V_{\mathrm{S}} \\
& \Rightarrow 3 \mathrm{~mA} \times 10=8 \mathrm{~A} \times R_{\mathrm{S}} \\
& \Rightarrow R_{\mathrm{S}}=3.75 \mathrm{~m} \Omega
\end{aligned}
$$

16. A particle executing simple harmonic motion along x-axis, with amplitude A, about origin. If ratio of kinetic energy and total energy at $x=\frac{A}{3}$ is
(1) $\frac{8}{9}$
(2) $\frac{7}{8}$
(3) $\frac{1}{9}$
(4) $\frac{1}{8}$

Answer (1)

Sol. $K E=\frac{1}{2} m \omega^{2}\left(A^{2}-n^{2}\right)$

$$
T E=\frac{1}{2} m \omega^{2} A^{2}
$$

$$
\frac{K E}{T E}=\frac{A^{2}-n^{2}}{A^{2}}=\frac{1-\frac{1}{9}}{1}=\frac{8}{9}
$$

17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. A solid sphere of radius $4 a$ with centre at origin. Two charge, $-2 q$ at $(-5 a, 0)$ and $5 q$ at $(3 a, 0)$ is placed. Flux through sphere is $\frac{x q}{\varepsilon_{0}}$. Find x

Answer (5)

Sol.

From Gauss law
$\phi=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{5 q}{\varepsilon_{0}}$
22. A stationary hydrogen atom de excites from first excited state to ground state. Find recoil speed of hydrogen atom up to nearest integral value. (mass of hydrogen atom $=1.8 \times 10^{-27} \mathrm{~kg}$)
Answer (3)
Sol. $\left|\Delta E_{0}\right|=\left(-13.6\left\{1-\frac{1}{4}\right\}\right) \mathrm{ev}$
$|\Delta E|=10.2 \mathrm{ev}$

$$
\begin{aligned}
& \stackrel{v}{\longleftrightarrow} \longrightarrow \frac{h}{\lambda} \\
& \lambda=\frac{12400}{10.2} \times 10^{-10} \mathrm{~m} \\
& \rho=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \times 10.2}{12400 \times 10^{-10}} \\
& \because m v=\frac{h}{\lambda} \\
& \therefore \quad 1.8 \times 10^{-27} \\
& v=\frac{6.63 \times 10.2 \times 10^{-34}}{12400 \times 10^{-10}} \\
& v=\frac{6.63 \times 10.2}{12400 \times 1.8} \times 10^{3} \\
& =\frac{6.63 \times 102}{124 \times 1.8}=3.02 \\
& \approx 3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

23. In a container, 1 g of hydrogen and 1 g of oxygen are taken. Find the ratio of hydrogen pressure to oxygen pressure.

Answer (16)

Sol. $P V=n R T$
$\Rightarrow P \propto n$
\Rightarrow Ratio $=\frac{32}{2}=16$
24. In a convex mirror having radius of curvature 30 cm the height of image is half the object height. What will be the object (in cm) distance?

Answer (15)

Sol. $f=15$
$m=-\frac{v}{u}=+\frac{1}{2}$
$v=-\frac{u}{2}$
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{2}{-u}+\frac{1}{u}=\frac{1}{f}$
$u=-f=-15 \mathrm{~cm}$
25. A solid cylinder is placed gently over an incline plane of inclination 60°. The acceleration of cylinder when it start rolling without slipping is $\frac{g}{\sqrt{x}}$, where μ is coefficient of friction. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (3)

Sol.

Since $a=\frac{g \sin \theta}{1+\frac{l}{M R^{2}}}$

$$
\begin{aligned}
& \Rightarrow a=\frac{g \times \frac{\sqrt{3}}{2}}{1+\frac{1}{2}}=\frac{g \frac{\sqrt{3}}{2}}{\frac{3}{2}} \\
& \Rightarrow \quad a=\frac{g}{\sqrt{3}}
\end{aligned}
$$

26. Voltage and resistance for a resistor are measured as $V=200 \pm 5$ volts and $R=20 \pm 0.2 \Omega$. The percentage error in current $I=\frac{V}{R}$ is x. Find the value of $10 x$

Answer (35)

Sol. \% error $=\left(\frac{d V}{V}+\frac{d R}{R}\right) \times 100$

$$
\begin{aligned}
& =\left(\frac{5}{200}+\frac{0.2}{20}\right) \times 100 \\
& =3.5
\end{aligned}
$$

27. Potential energy function corresponding to a conservative force is given as $U(x, y, z)=\frac{3 x^{2}}{2}+5 y+6 z$, then the force at $x=6$ is $p \mathrm{~N}$. The value of p upto its nearest integral value is

Answer (20)

Sol. $F_{x}=\frac{-d v}{d x}$

$$
\begin{aligned}
& \vec{F}=-3 x \hat{i}-5 \hat{j}-6 \hat{k} \\
& |\vec{F}|_{x=6}=\sqrt{18^{2}+5^{2}+6^{2}} \\
& =\sqrt{324+25+36} \\
& =\sqrt{385} \\
& =19.62 \mathrm{~N}
\end{aligned}
$$

28.
29.
30.
