Memory Based Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section-A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\boldsymbol{+ 4} \mathbf{~ m a r k s}$ for correct answer and -1 mark for wrong answer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. In a simple pendulum of length 10 m , string is initially kept horizontal and the bob is released. 10\% of energy is lost till the bob reaches lowermost position. Then find speed of bob at lowermost position.
(1) $6 \mathrm{~m} / \mathrm{s}$
(2) $6 \sqrt{5} \mathrm{~m} / \mathrm{s}$
(3) $7 \sqrt{5} \mathrm{~m} / \mathrm{s}$
(4) $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer (2)

Sol. $W_{\text {total }}=\Delta K$

$$
\begin{gathered}
\Rightarrow \quad 0.9 \mathrm{mgl}=\frac{1}{2} m v^{2} \\
\Rightarrow \quad v=\sqrt{1.8 \times 10 \times 10} \\
=6 \sqrt{5} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

2. The intensity at each slit are equal for a YDSE and it is maximum ($I_{\text {max }}$) at central maxima. If $/$ is intensity for phase difference $\frac{7 \pi}{2}$ between two waves (at screen). Then $\frac{l}{I_{\max }}$ is
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $\frac{3}{8}$
(4) $\frac{1}{\sqrt{2}}$

Answer (1)
Sol. $I=I_{\max } \cos ^{2}\left(\frac{\Delta \phi}{2}\right)$

$$
\begin{aligned}
& \frac{I}{I_{\max }}=\cos ^{2} \frac{7 \pi}{4} \\
& \frac{I}{I_{\max }}=\cos ^{2}\left(\frac{\pi}{4}\right)=\frac{1}{2}
\end{aligned}
$$

3. An electromagnetic wave has electric field given by $\vec{E}=(9.6 \hat{j}) \sin \left[2 \pi\left\{30 \times 10^{6} t-\frac{1}{10} x\right\}\right], x$ and t are in SI units. The maximum magnetic field is
(1) 3.2×10^{-8}
(2) 9.6×10^{-8}
(3) 1.7×10^{-8}
(4) 10^{-7}

Answer (1)

Sol. $\frac{E}{B}=C$
$\Rightarrow \quad B=\frac{E}{C}=3.2 \times 10^{-8}$
4. A planet at distance r from sun takes 200 days to complete one revolution around sun. What will be time period for a planet at distance $\frac{r}{4}$ from the sun?
(1) 50 days
(2) 25 days
(3) 100 days
(4) 12.5 days

Answer (2)

Sol. $T^{2} \propto R^{3}$

$$
\begin{aligned}
& \frac{200^{2}}{T^{2}}=\frac{r^{3}}{\left(\frac{r}{4}\right)^{3}} \\
& \frac{200}{T}=(4)^{\frac{3}{2}} \\
& \frac{200}{8}=T \\
& \Rightarrow T=25 \text { days }
\end{aligned}
$$

5. The truth table for the combination of logical gates

(1)

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

(2)

A	B	Y
0	0	0
0	1	0
1	0	1
1	1	1

(3)

A	B	Y
0	0	0
0	1	1
1	0	0
1	1	1

(4)

A	B	Y
0	0	0
0	1	1
1	0	0
1	1	0

Answer (3)

Sol. $Y=A \cdot B+\bar{A} \cdot B=B(A+\bar{A})=B$
6. A uniform wire has length L and radius r. It is acted on by a force F as shown. The elongation is Δl. If F and r are both halved, the new elongation will be :

(1) $\frac{\Delta l}{2}$
(2) Δl
(3) $4 \Delta I$
(4) $2 \Delta /$

Answer (4)

Sol. $\Delta I=\frac{F L}{A y} \propto \frac{F}{r^{2}}$

$$
\Rightarrow \Delta I^{\prime}=\frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^{2}} \Delta I=2 \Delta l
$$

7. Two forces F_{1} and F_{2} are applied on two rods P and Q of same materials such that elongation in rods are same. If ratio of their radii is $x: y$ and ratio of length is $m: n$, then ratio of $F_{1}: F_{2}$ is
(1) $\left(\frac{y}{x}\right)^{2} \frac{n}{m}$
(2) $\left(\frac{x}{y}\right)^{2} \cdot \frac{n}{m}$
(3) $\left(\frac{x}{y}\right)^{2} \cdot \frac{m}{n}$
(4) $\left(\frac{y}{x}\right)^{2} \cdot\left(\frac{m}{n}\right)$

Answer (2)

Sol. $\Delta I_{1}=\frac{F_{1} I_{1}}{Y A_{1}}, \Delta I_{2}=\frac{F_{2} I_{2}}{Y A_{2}}$

$$
\frac{F_{1}}{F_{2}}=\frac{A_{1}}{A_{2}} \times \frac{I_{2}}{l_{1}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}\left(\frac{I_{2}}{l_{1}}\right)=\frac{x^{2}}{y^{2}} \cdot \frac{n}{m}
$$

8. Two charged particles A and B have charge q each while masses are $m_{1} \& m_{2}$. Both have same velocity v and enter into a transverse magnetic field B such that their radii are $r_{1} \& r_{2}$. Then the ratio $m_{1}: m_{2}$ is
(1) $\frac{r_{2}}{r_{1}}$
(2) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
(3) $\frac{r_{1}}{r_{2}}$
(4) $\left(\frac{r_{2}}{r_{1}}\right)^{2}$

Answer (3)

Sol. $r=\frac{m v}{B q}$

$$
r \propto m \Rightarrow \frac{r_{1}}{r_{2}}=\frac{m_{1}}{m_{2}}
$$

9. A liquid drop of radius R is divided into 27 identical drops. If surface tension of the drops is T, then find work done in this process.
(1) $4 \pi R^{2} T$
(2) $3 \pi R^{2} T$
(3) $8 \pi R^{2} T$
(4) $\frac{1}{8} \pi R^{2} T$

Answer (3)

Sol. $W=T \times$ change in area (ΔS)
From volume conservation
$\frac{4}{3} \pi R^{3}=27 \pi r^{3} \times \frac{4}{3}$
$R=3 r$
$r=\frac{R}{3}$
$\therefore \quad \Delta S=4 \pi r^{2} \times 27-4 \pi R^{2}$

$$
=4 \pi \times \frac{R^{2}}{9} \times 27-4 \pi R^{2}=2\left(4 \pi R^{2}\right)
$$

$W=8 \pi R^{2} T$
10. Alternating voltage and current in circuit is given as
$V=(100 \sin \omega t)$ volt
$I=100 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{mA}$
Find average power dissipated in circuit.
(1) 2.5 w
(2) 5 w
(3) 10 w
(4) 20 w

Answer (1)

Sol. $P_{\mathrm{avg}}=I V \cos \phi=\frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \cos 60^{\circ}=2.5 \mathrm{w}$
11. Consider a rod moving in a magnetic field as shown:

The induced emf across the ends of the rod is
(1) 3 mV
(2) 6 mV
(3) 0 V
(4) 1 mV

Answer (1)

Sol. $\varepsilon=B \ell v=3 \mathrm{mV}$
12. A particle connected with light thread is performing vertical circular motion. Speed at point B (Lowermost point) is of just sufficient, so that it is able to complete its circular motion. Ignoring air friction, find the ratio of kinetic energy at A to that at B. (A being top-most point)

(1) $1: 5$
(2) $5: 1$
(3) $1: 7 \sqrt{2}$
(4) $1: 5 \sqrt{2}$

Answer (1)
Sol. $v_{A}=\sqrt{g L}$
$v_{B}=\sqrt{5 g L}$
$\Rightarrow \quad \frac{k_{A}}{k_{B}}=\frac{1}{5}$

In given circuit, an ideal battery is connected with four resistances as shown. Find current i as mentioned in diagram.
(1) 2 A
(2) 1 A
(3) 4 A
(4) 0.5 A

Answer (2)

Sol. $\mathrm{req}=2+2+1=5 \Omega$

$$
\begin{aligned}
& i_{b}=\frac{10}{5}=2 \mathrm{~A} \\
& i=\frac{i_{b}}{2}=1 \mathrm{~A}
\end{aligned}
$$

14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. A physical quantity Q depends on other physical quantities a, b and c as
$Q=\frac{a^{4} b^{3}}{c^{2}}$
If maximum percentage error in measurement of a, b and c are $3 \%, 4 \%$ and 5% respectively, then find maximum percentage error in measurement of Q.

Answer (34)

Sol. $Q=\frac{a^{4} b^{3}}{c^{2}}$

$$
\begin{aligned}
& \frac{\Delta Q}{Q}=4 \frac{\Delta a}{a}+3 \frac{\Delta b}{b}+2 \frac{\Delta c}{c} \\
& \begin{aligned}
\frac{\Delta Q}{Q} \times 100 & =4(3)+3(4)+2(5) \\
& =12+12+10
\end{aligned}
\end{aligned}
$$

$\%$ error $\frac{\Delta Q}{Q} \%=34 \%$
22. Consider the circuit shown :

The ammeter reads 0.9 A . Value of R is \qquad
Answer (30)
Sol. $20 \Omega \& 15 \Omega$ in parallel

$$
\begin{aligned}
& \Rightarrow 20 \times 0.3=15 \times i \\
& \Rightarrow i=0.4 \mathrm{~A} \\
& \Rightarrow \quad i_{R}=0.9-0.3-0.4 \mathrm{~A} \\
& \quad=0.2 \mathrm{~A} \\
& \Rightarrow R \times 0.2=20 \times 0.3 \\
& \Rightarrow R=30 \Omega
\end{aligned}
$$

23. Consider the circuit shown:

Charge on $6 \mu \mathrm{~F}$ when A and B are shorted is \qquad $\mu \mathrm{C}$.

Answer (36)

Sol. In steady state, 6Ω and 3Ω are in series.

$$
\begin{aligned}
& \Rightarrow \quad \Delta V_{6 \Omega}=6 \mathrm{~V}=\Delta V_{6 \mu \mathrm{~F}} \\
& \Rightarrow \quad \phi=C V=36 \mu \mathrm{C}
\end{aligned}
$$

24. Distance between twice-magnified virtual image of an object placed in front of mirror is 15 cm . Find focal length of spherical mirror in cm .

Answer (10)

Sol. Magnified virtual image of real object
\Rightarrow Concave mirror

$$
\left(\frac{v}{u}\right)=2
$$

$$
\Rightarrow 2 x+x=15
$$

$$
x=5 \mathrm{~cm}
$$

$$
\frac{1}{v}+\frac{1}{u}=\frac{1}{f}
$$

$$
\Rightarrow \frac{1}{10}-\frac{1}{5}=\frac{1}{f}
$$

$$
\frac{1-2}{10}=\frac{-1}{10}=\frac{1}{f}
$$

$\Rightarrow f=-10$
25. The displacement of a particle changing with time as $\mathrm{x}=6 t^{3}-12 t^{2}+20 t+30$. Find velocity (in m / s) of particle when it's acceleration became zero. (t is time in s)

Answer (12)

Sol. $v=\frac{d x}{d t}=20$

$$
=18 t^{2}-24 t+20
$$

$$
a=\frac{d v}{d t}=36 t-24
$$

At $a=0$

$$
t=\frac{24}{36}=\frac{2}{3} \mathrm{sec}
$$

Then,

$$
\begin{aligned}
v & =18 \times \frac{4}{9}-24 \times \frac{2}{3}+20 \\
& =8-16+20=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

26. Electric field in a region is given by $\vec{E}=(6 \hat{i}+7 \hat{j}+8 \hat{k})$ units. An area of 30 units is considered in y-z plane. Calculate the electric flux through this area.
Answer (180)
Sol. $\phi=\vec{E} \cdot \vec{A}=(6 \hat{i}+7 \hat{j}+8 \hat{k}) \cdot 30 \hat{i}=180$
27. N moles of non-linear polyatomic gas (degree of freedom 6) is mixed with 2 moles of monoatomic gas. The resultant mixture has molar specific heat equal to that of a diatomic gas, then N is

Answer (4)

Sol. $\frac{n_{1} \frac{f_{1}}{2} R+n_{2} \frac{f_{2}}{2} R}{n_{1}+n_{2}}=\frac{5}{2} R$
$\frac{2 \times \frac{3}{2} R+N \times \frac{6}{2} R}{N+2}=\frac{5}{2} R$
$\frac{6+6 N}{N+2}=5$
$6+6 N=5 N+10$
$N=4$
28. A particle starts oscillation from origin on x-axis with period of oscillation (6) sec and amplitude A. If time taken by particle to reach from $x=A$ to $x=\frac{\sqrt{3}}{2} A$ for the first time is τ then. Value of 6τ is \qquad sec.

Answer (3)

Sol. $x=A \sin \left(\omega t+\frac{\pi}{2}\right)$
$x=A \cos \omega t$
$\frac{\sqrt{3}}{2} A=A \cos \left(\frac{2 \pi}{\tau} t\right)$
$\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{3} t\right)$
$\frac{\pi}{6}=\frac{t}{3} \pi$
$t=\frac{1}{2}=0.5$
$6 \tau=3$
29.
30.

