

OH

is

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Best reducing agent among the given ions is
 - (1) Ce4+
- (2) Gd²⁺
- (3) Lu³⁺
- (4) Nd3+

Answer (2)

Sol. Gd²⁺: [Xe] 5d¹4f⁷

Gd²⁺ would get converted into Gd³⁺ as Gd³⁺ has stable electronic configuration

2. Choose the correct reaction.

(1)
$$CH_3 - CH_2 - C - NH_2 \xrightarrow{Br_2}$$

$$CH_3 - CH_2 - CH_2 - NH_2$$

$$(2) \bigcirc \xrightarrow{Br_2} \bigcirc Br$$

(3)
$$CH_3 - CH_2 - CH_2 - CH_2 - NH_2 \xrightarrow{HNO_2 \ (0-5)^{\circ}C}$$

 $CH_3 - CH_2 - CH_2 - CH_2 - OH$

Answer (4)

Sol.
$$HI \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_2 \rightarrow CH_2$$

$$\begin{array}{c|c}
& Br \\
\hline
& WV \\
\hline
CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - NH_2 & \frac{HNO_2}{(0-5)^{\circ}C} \\
\hline
CH_3 - CH_2 - CH_2 - CH - CH_3 & OH
\end{array}$$

- 3. IUPAC name of compound
 - (1) Hex-2-en-1-ol
 - (2) Cyclohex-2-en-1-ol
 - (3) 3-hydroxy cyclohexene
 - (4) Cyclohex-1-en-3-ol

Answer (2)

- 4. Why does oxygen shows anomalous behaviour?
 - (1) Large size, high electronegativity
 - (2) Small size, small electronegativity
 - (3) Small size, high electronegativity absence of vacant d-orbital
 - (4) Large size, high electronegativity presence of vacant d-orbital

Answer (3)

Sol. Oxygen shows anomalous behaviour due to small size, high electronegativity and absence of vacant d-orbital.

- 5. Match the following
 - (A) Lyman
- (i) IR
- (B) Balmer
- (ii) IR
- (C) Paschen
- (iii) Visible
- (D) Pfund
- (iv) UV
- (1) $A \rightarrow (iv), B \rightarrow (iii)$

$$C \rightarrow (i), D \rightarrow (ii)$$

(2) $A \rightarrow (i), B \rightarrow (iii)$

$$C \rightarrow (ii), D \rightarrow (iv)$$

- (3) $A \rightarrow (iv), B \rightarrow (ii)$
 - $C \rightarrow (iii), D \rightarrow (iv)$
- (4) $A \rightarrow (i)$, $B \rightarrow (ii)$
 - $C \rightarrow (iii), D \rightarrow (iv)$

Answer (1)

Sol. Lyman \rightarrow UV

Balmer → Visible

Paschen → IR

Pfund \rightarrow IR

- 6. IUPAC name of K₂MnO₄ is
 - (1) Potassium tetraoxomanganate(VI)
 - (2) Potassium tetraoxomanganate(III)
 - (3) Potassium tetraoxomanganese(VI)
 - (4) Tetraoxomanganese(VI) potassium

Answer (1)

Sol. Correct IUPAC name of K₂MnO₄ is Potassium tetraoxomanganate(vi)

7. Find out final product (A)

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{(i) HNO}_2 (0-5)^{\circ} C \\
\hline
 & \text{(ii) Cu}_2 \text{Cl}_2 / \text{HCl}
\end{array}$$

$$\stackrel{\oplus}{N} = NCI^{-}$$
(1)
$$\bigcirc$$

NH₂

CI

Answer (3)

- 3. Which of the following element has highest 1st lonization energy?
 - (1) N

(2) C

(3) Si

(4) AI

Answer (1)

Sol. N has highest 1st Ionization energy among C, Si, N and Al.

For, $N = 1402 \text{ kJ mol}^{-1} (IE_1)$

 $C = 1086 \text{ kJ mol}^{-1} (IE_1)$

 $AI = 577 \text{ kJ mol}^{-1} (IE_1)$

 $Si = 786 \text{ kJ mol}^{-1} (IE_1)$

- 9. Which reagent gives bright red ppt with Ni²⁺ in basic medium?
 - (1) DMG
- (2) Nessler's reagent
- (3) KCNS
- (4) K₄[Fe(CN)₆]

Answer (1)

Sol.
$$NiCl_2 + CH_3 - C = NOH$$

$$CH_3 - C = NOH$$

$$CH_3 - C = NOH$$

$$DMG$$

$$Dimethylglyoxime
$$(Cherry red ppt.)$$$$

10. Match the following List-I and List-II

	List-I (Polymer)		List-II (Monomer)
(A)	Starch	(i)	β-glucose
(B)	Cellulose	(ii)	Nucleotide
(C)	Nucleic acid	(iii)	α -glucose
(D)	Protein	(iv)	α-Amino acid

- (1) $A \rightarrow (i)$; $B \rightarrow (iii)$; $C \rightarrow (ii)$; $D \rightarrow (iv)$
- (2) $A \rightarrow (iii)$; $B \rightarrow (i)$; $C \rightarrow (ii)$; $D \rightarrow (iv)$
- (3) $A \rightarrow (iii)$; $B \rightarrow (i)$; $C \rightarrow (iv)$; $D \rightarrow (ii)$
- (4) $A \rightarrow (ii)$; $B \rightarrow (iii)$; $C \rightarrow (i)$; $D \rightarrow (iv)$

Answer (2)

Sol. Starch is polymer of α -D-glucose. Cellulose is polymer of β -D-glucose. Nucleic acid is polymer of nucleotide. Proteins are polymer of α -aminoacids.

JEE (Main)-2024: Phase-1 (29-01-2024)-Evening

11. Which of the following can show geometrical isomerism?

Answer (4)

Sol. The two geometrical isomers of

- 12. Which reagent is used to convert alkyl halide into alkyl isocyanide?
 - (1) KCN
- (2) AgCN
- (3) KNO₂
- (4) AgNO₂

Answer (2)

Sol.
$$R-X+AgCN \rightarrow R-N \equiv C+AgX$$

- 13. Find the total number of sigma (σ) and π bonds in 2-formylhex-4-enoic acid.
 - (1) 20

(2) 22

- (3) 18
- (4) 24

Answer (2)

Sol. The structure of 2-formylhex-4-enoic acid is

- 14. A gas 'X' is added to Nessler's reagent then brown precipitate is formed, gas X is
 - (1) NH₃
- (2) SO₂
- (3) Cl₂
- (4) Br₂

Answer (1)

Sol. $2K_2HgI_4 + 3KOH + NH_3 -$ Nessler's

reagent

 $\left[\mathsf{OHg}_2 \cdot \mathsf{NH}_2 \right] \mathsf{I} + \mathsf{7KI} + 2\mathsf{H}_2 \mathsf{O}$ Brown ppt

Ammonia gas on reaction with Nessler's reagent to form brown ppt. Brown ppt formed is also called iodide of million's base $(H_2N - Hg - O - Hg - I)$

Match the following

I (compounds)		II (pKa)	
(a)	p-nitrophenol	(i)	10
(b)	m-nitrophenol	(ii)	16
(c)	Ethanol	(iii)	7.1
(d)	Phenol	(iv)	8.3

- (1) (a) \rightarrow (i); (b) \rightarrow (ii); (c) \rightarrow (iii); (d) \rightarrow (iv)
- (2) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (ii); (d) \rightarrow (i)
- (3) (a) \rightarrow (iv); (b) \rightarrow (iii); (c) \rightarrow (ii); (d) \rightarrow (i)
- (4) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (i); (d) \rightarrow (ii)

Answer (2)

Sol. Acidic strength order:

p-nitrophenol > m-nitrophenol > Phenol >> ethanol

- 16. We have given some hydrocarbons
 - (A) $HC \equiv CH$
 - (B) $H_2C = CH_2$

(D) $CH_3 - CH_2 - CH_2 - H$

Correct order of acidic strength of above hydrocarbons.

- (1) A > B > C > D
- (2) A > B > D > C
- (3) C > D > B > A
- (4) A > C > B > D

Answer (2)

Sol. More the stability of conjugate base of given acids, more will be the acidic strength.

- (A) $HC \equiv C^{\Theta}$ (more % s character more will be stability of anion)
- (B) $H_2C = CH^{\Theta}$

(C)
$$CH_3 - C$$
 (Alkyl group increases electron CH_3

density on carbon so stability decreases)

(D) CH₃ - CH₂ - CH₂

Order of stability of conjugate base

A > B > D > C

So order of acidic strength

A > B > D > C

- 17. In chromatographic techniques, which of the following follows preferential adsorption?
 - (A) Column chromatography
 - (B) Thin layer chromatography
 - (C) Paper chromatography
 - (1) A only
- (2) B only
- (3) C only
- (4) A and B both

Answer (4)

Sol. Column chromatography Thin layer chromatography absorption of substance

Paper chromatography → Partition chromatography

18. Consider the following sequence of reactions

Fina A, B and C

(1) A: DiBAL-H

B: NaOH (dil)

C: Zn - Hg/HCI

(2) A: LiAIH₄

B: KOH (alcoholic)

C: NH₂ - NH₂/KOH

(3) A: DiBAL – H

B: NaOH (dil)

C: NH₂ - NH₂/KOH

(4) A: NaBH₄

B: KOH (aqueous)

C: Zn - Hg/HCI

Answer (3)

Sol. (A) DiBALH - Convert ester to aldehyde

(B) dil NaOH - Aldol condensation

(C) NH₂ - NH₂/KOH - Wolff Kishner reduction

19. The correct statement about Zn, Cd, Hg are

(1) All are solid metals at room temperature

(2) They have high enthalpy of atomization

(3) All are paramagnetic

(4) Zn, Cd cannot show variable oxidation state but Hg can show variable oxidation state

Answer (4)

Sol. Hg can show +1 and +2 O.S.

20.
$$OH$$

$$+ CHCI_3 \xrightarrow{1) \text{NaOH}} \text{Major Product}$$

The major product in the above reaction is

(1) 2-hydroxybenzaldehyde

(2) 2-hydroxybenzoic acid

(3) 4-hydroxybenzaldehyde

(4) 3-hydroxybenzaldehyde

Answer (1)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Oxidation state of Fe (Iron) in complex formed in brown ring test.

Answer (1)

Sol. Complex formed during brown ring test is $[Fe(H_2O)_5NO]SO_4$.

NO is present as NO+ here.

$$x + 5 \times 0 + 1 = +2$$

$$x = +1$$

Oxidation state of Fe is +1

JEE (Main)-2024 : Phase-1 (29-01-2024)-Evening

22. How many of the following compounds have zero dipole moment?

Answer (3)

Sol. CO_2 , BF_3 and CH_4 have symmetrical structures leading to μ = O

23. Calculate equilibrium constant for the given following reaction at 500K.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Given molarity of NH₃(g), N₂(g) and H₂(g) at equilibrium is 1.5×10^{-2} M, 2×10^{-2} M and 3×10^{-2} M respectively.

Answer (417)

Sol.
$$K_C = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

$$K_{C} = \frac{(1.5 \times 10^{-2})^{2}}{(2 \times 10^{-2}) \times (3 \times 10^{-2})^{3}}$$

$$K_C = \frac{2.25 \times 10^{-4}}{2 \times 10^{-2} \times 27 \times 10^{-6}}$$

$$K_C = 0.04167 \times 10^4$$

$$K_C = 416.7 \approx 417$$

24. 50 ml of 0.5 M oxalic acid is completely Neutralised by 25 ml of NaOH solution. Find out amount of NaOH (in gm) present in 25 ml of given NaOH solution.

Answer (2)

Sol. $M_1V_1N_1 = M_2V_2N_2$

$$(50) (0.5) (2) = (M_2) (25) (1)$$

$$M_2 = 2$$

Moles of NaOH =
$$\frac{2 \times 25}{1000} = \frac{1}{20}$$

Mass of NaOH =
$$\frac{1}{20} \times 40 = 2gm$$

25. If standard enthalpy of vaporization of CCI₄ is 30.5 kJ/mol, find heat absorbed for vaporization of 294 gm of CCI₄. [Nearest integer] [in kJ]

Answer (58)

Sol. Vaporization of 1 mole CCI₄ requires 30.5 kJ

294 gm is
$$\frac{294}{154} = 1.91$$
 moles

Vaporization of 1.91 moles of CCI₄ will require $30.5 \times 1.91 \text{ kJ} = 58.255 \text{ kJ}$

26. Find out molality of 0.8 M H₂SO₄ solution having density of solution equal to 1.02 gm/ml (Nearest integer)

Answer (1)

Sol.
$$m = \frac{1000 \text{ M}}{10008 - \text{M} (\mu)}$$

$$= \frac{1000 (0.8)}{1000 (1.02) - (0.8) (98)} = \frac{800}{1020 - 78.4}$$

$$= \frac{800}{941.6} = 0.849$$

27. Aqueous solution of [AuCl₄]⁻ on electrolysis by passing current for 10 minutes, the mass of Au deposited at Cathode is 1.97 gm. Find out current required (in A) (Nearest integer)

Answer (5)

Sol. Au³⁺ + 3e⁻
$$\longrightarrow$$
 Au(s)
1.97 gm
0.03 mole $\frac{1.97}{197} = 0.01$ mole

Charge =
$$0.03 \times 96500$$

Current =
$$\frac{0.03 \times 96500}{10 \times 60}$$

= 4.825 A
 $\approx 5A$

28. If half life of radioactive bromine (Br-82) is 36 hr, find percentage remaining after one day. [nearest integer]

Answer (63)

Sol.
$$\ln \frac{N_0}{N} = \lambda t = \frac{\ln 2}{36} \times 24$$

= $\frac{2}{3} \ln 2$
 $\Rightarrow \frac{N_0}{N} = 2^{2/3}$
 $\Rightarrow \frac{N}{N_0} = \frac{1}{2^{2/3}}$
% age remaining = $100 \frac{N}{N_0} = \frac{100}{2^{2/3}} = 62.99$

29.

30.