CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Best reducing agent among the given ions is
(1) Ce^{4+}
(2) Gd^{2+}
(3) Lu^{3+}
(4) Nd^{3+}

Answer (2)

Sol. Gd ${ }^{2+}$: $[\mathrm{Xe}] 5 d^{11} 4 f^{\prime}$
Gd^{2+} would get converted into Gd^{3+} as Gd^{3+} has stable electronic configuration
2. Choose the correct reaction.
(1)

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}
$$

(2)

(3)

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}
$$

(4)

Answer (4)

Sol.

3. IUPAC name of compound

(1) Hex-2-en-1-ol
(2) Cyclohex-2-en-1-ol
(3) 3-hydroxy cyclohexene
(4) Cyclohex-1-en-3-ol

Answer (2)

Sol.

4. Why does oxygen shows anomalous behaviour?
(1) Large size, high electronegativity
(2) Small size, small electronegativity
(3) Small size, high electronegativity absence of vacant d-orbital
(4) Large size, high electronegativity presence of vacant d-orbital
Answer (3)
Sol. Oxygen shows anomalous behaviour due to small size, high electronegativity and absence of vacant d-orbital.
5. Match the following
(A) Lyman
(i) IR
(B) Balmer
(ii) $I R$
(C) Paschen
(iii) Visible
(D) Pfund
(iv) UV
(1) $\mathrm{A} \rightarrow$ (iv), B \rightarrow (iii)
$\mathrm{C} \rightarrow$ (i), $\mathrm{D} \rightarrow$ (ii)
(2) $\mathrm{A} \rightarrow$ (i), $\mathrm{B} \rightarrow$ (iii)
$\mathrm{C} \rightarrow$ (ii), $\mathrm{D} \rightarrow$ (iv)
(3) $\mathrm{A} \rightarrow$ (iv), $\mathrm{B} \rightarrow$ (ii)

$$
\mathrm{C} \rightarrow \text { (iii), } \mathrm{D} \rightarrow \text { (iv) }
$$

(4) $A \rightarrow$ (i), B \rightarrow (ii)

$$
\mathrm{C} \rightarrow \text { (iii), } \mathrm{D} \rightarrow \text { (iv) }
$$

Answer (1)

Sol. Lyman \rightarrow UV
Balmer \rightarrow Visible
Paschen \rightarrow IR
Pfund \rightarrow IR
6. IUPAC name of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
(1) Potassium tetraoxomanganate(VI)
(2) Potassium tetraoxomanganate(III)
(3) Potassium tetraoxomanganese(VI)
(4) Tetraoxomanganese(VI) potassium

Answer (1)

Sol. Correct IUPAC name of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is Potassium tetraoxomanganate(vi)
7. Find out final product (A)

(1)

(2)

(3)

(4)

Answer (3)

8. Which of the following element has highest $1^{\text {st }}$ Ionization energy?
(1) N
(2) C
(3) Si
(4) Al

Answer (1)
Sol. N has highest $1^{\text {st }}$ lonization energy among $\mathrm{C}, \mathrm{Si}, \mathrm{N}$ and AI.

For, $\mathrm{N}=1402 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{IE}_{1}\right)$
$\mathrm{C}=1086 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{IE}_{1}\right)$
$\mathrm{Al}=577 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{IE}_{1}\right)$
$\mathrm{Si}=786 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{IE}_{1}\right)$
9. Which reagent gives bright red ppt with Ni^{2+} in basic medium?
(1) DMG
(2) Nessler's reagent
(3) KCNS
(4) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer (1)

Sol. $\mathrm{NiCl}_{2}+$

10. Match the following List-I and List-II

	List-I (Polymer)		List-II (Monomer)
(A)	Starch	(i)	β-glucose
(B)	Cellulose	(ii)	Nucleotide
(C)	Nucleic acid	(iii)	α-glucose
(D)	Protein	(iv)	α-Amino acid

(1) $\mathrm{A} \rightarrow$ (i); B \rightarrow (iii); C \rightarrow (ii); D \rightarrow (iv)
(2) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)
(3) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (ii)
(4) $\mathrm{A} \rightarrow$ (ii); B \rightarrow (iii); C \rightarrow (i); D \rightarrow (iv)

Answer (2)

Sol. Starch is polymer of α-D-glucose. Cellulose is polymer of β-D-glucose. Nucleic acid is polymer of nucleotide. Proteins are polymer of α-aminoacids.
11. Which of the following can show geometrical isomerism?
(1)

(2)

(3)

(4)

Answer (4)

Sol. The two geometrical isomers of

are
 and

12. Which reagent is used to convert alkyl halide into alkyl isocyanide?
(1) KCN
(2) AgCN
(3) KNO_{2}
(4) AgNO_{2}

Answer (2)

Sol. $\mathrm{R}-\mathrm{X}+\mathrm{AgCN} \rightarrow \mathrm{R}-\mathrm{N} \equiv \mathrm{C}+\mathrm{Ag} \mathrm{X}$
13. Find the total number of sigma (σ) and π bonds in 2-formylhex-4-enoic acid.
(1) 20
(2) 22
(3) 18
(4) 24

Answer (2)
Sol. The structure of 2-formylhex-4-enoic acid is

14. A gas ' X ' is added to Nessler's reagent then brown precipitate is formed, gas X is
(1) NH_{3}
(2) SO_{2}
(3) Cl_{2}
(4) Br_{2}

Answer (1)

Sol. $2 \mathrm{~K}_{2} \mathrm{Hgl}_{4}+3 \mathrm{KOH}+\mathrm{NH}_{3} \longrightarrow$

$$
\underset{\text { Brown ppt }}{\left[\mathrm{OHg}_{2} \cdot \mathrm{NH}_{2}\right] \mathrm{I}}+7 \mathrm{KI}+2 \mathrm{H}_{2} \mathrm{O}
$$

Ammonia gas on reaction with Nessler's reagent to form brown ppt. Brown ppt formed is also called iodide of million's base ($\mathrm{H}_{2} \mathrm{~N}-\mathrm{Hg}-\mathrm{O}-\mathrm{Hg}-\mathrm{I}$)
15. Match the following

I (compounds)		II (pKa)	
(a)	p-nitrophenol	(i)	10
(b)	m-nitrophenol	(ii)	16
(c)	Ethanol	(iii)	7.1
(d)	Phenol	(iv)	8.3

(1) (a) \rightarrow (i); (b) \rightarrow (ii); (c) \rightarrow (iii); (d) \rightarrow (iv)
(2) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (ii); (d) \rightarrow (i)
(3) (a) \rightarrow (iv); (b) \rightarrow (iii); (c) \rightarrow (ii); (d) \rightarrow (i)
(4) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (i); (d) \rightarrow (ii)

Answer (2)

Sol. Acidic strength order: p-nitrophenol > m-nitrophenol > Phenol >> ethanol
16. We have given some hydrocarbons
(A) $\mathrm{HC} \equiv \mathrm{CH}$
(B) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
(C)

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{H}$

Correct order of acidic strength of above hydrocarbons.
(1) A $>$ B $>$ C $>$ D
(2) A $>$ B $>$ D $>$ C
(3) C $>$ D $>$ B $>$ A
(4) A $>$ C $>$ B $>$ D

Answer (2)
Sol. More the stability of conjugate base of given acids, more will be the acidic strength.
(A) $\mathrm{HC} \equiv \mathrm{C}^{\ominus}$ (more \% s character more will be stability of anion)
(B) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}^{\ominus}$
(C)
 (Alkyl group increases electron
density on carbon so stability decreases)
(D)

Order of stability of conjugate base
A $>\mathrm{B}>\mathrm{D}>\mathrm{C}$
So order of acidic strength

$$
\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}
$$

17. In chromatographic techniques, which of the following follows preferential adsorption?
(A) Column chromatography
(B) Thin layer chromatography
(C) Paper chromatography
(1) A only
(2) B only
(3) C only
(4) A and B both

Answer (4)
Sol. Column chromatography Separation based on Thin layer chromatography $ـ$ absorption of substance Paper chromatography \rightarrow Partition chromatography
18. Consider the following sequence of reactions

Fina A, B and C
(1) A: DiBAL-H
$\mathrm{B}: \mathrm{NaOH}$ (dil)
C: $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
(2) A: LiAlH_{4}

B: KOH (alcoholic)
C: $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}$
(3) A: DiBAL - H
$\mathrm{B}: \mathrm{NaOH}$ (dil)
C: $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}$
(4) $\mathrm{A}: \mathrm{NaBH}_{4}$

B: KOH (aqueous)
C: $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$

Answer (3)

Sol. (A) DiBALH - Convert ester to aldehyde
(B) dil NaOH - Aldol condensation
(C) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}-$ Wolff Kishner reduction
19. The correct statement about $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ are
(1) All are solid metals at room temperature
(2) They have high enthalpy of atomization
(3) All are paramagnetic
(4) Zn, Cd cannot show variable oxidation state but Hg can show variable oxidation state

Answer (4)

Sol. Hg can show +1 and +2 O.S.
20.

Major Product
The major product in the above reaction is
(1) 2-hydroxybenzaldehyde
(2) 2-hydroxybenzoic acid
(3) 4-hydroxybenzaldehyde
(4) 3-hydroxybenzaldehyde

Answer (1)

Sol.
 is the major product in Reimer-

Tiemann reaction

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Oxidation state of Fe (Iron) in complex formed in brown ring test.

Answer (1)

Sol. Complex formed during brown ring test is [$\left.\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$.
NO is present as NO^{+}here.
$x+5 \times 0+1=+2$
$x=+1$
Oxidation state of Fe is +1
22. How many of the following compounds have zero dipole moment?
$\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{BF}_{3}, \mathrm{CH}_{4}$

Answer (3)

Sol. $\mathrm{CO}_{2}, \mathrm{BF}_{3}$ and CH_{4} have symmetrical structures leading to $\mu=\mathrm{O}$

23. Calculate equilibrium constant for the given following reaction at 500 K .

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Given molarity of $\mathrm{NH}_{3}(\mathrm{~g}), \mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ at equilibrium is $1.5 \times 10^{-2} \mathrm{M}, 2 \times 10^{-2} \mathrm{M}$ and $3 \times 10^{-2} \mathrm{M}$ respectively.

Answer (417)

Sol. $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
$\mathrm{K}_{\mathrm{C}}=\frac{\left(1.5 \times 10^{-2}\right)^{2}}{\left(2 \times 10^{-2}\right) \times\left(3 \times 10^{-2}\right)^{3}}$
$\mathrm{K}_{\mathrm{C}}=\frac{2.25 \times 10^{-4}}{2 \times 10^{-2} \times 27 \times 10^{-6}}$
$\mathrm{K}_{\mathrm{C}}=0.04167 \times 10^{4}$
$\mathrm{K}_{\mathrm{C}}=416.7 \approx 417$
24. 50 ml of 0.5 M oxalic acid is completely Neutralised by 25 ml of NaOH solution. Find out amount of NaOH (in gm) present in 25 ml of given NaOH solution.

Answer (2)

Sol. $\mathrm{M}_{1} \mathrm{~V}_{1} \mathrm{~N}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \mathrm{~N}_{2}$
(50) (0.5) (2) $=\left(\mathrm{M}_{2}\right)(25)(1)$
$\mathrm{M}_{2}=2$
Moles of $\mathrm{NaOH}=\frac{2 \times 25}{1000}=\frac{1}{20}$
Mass of $\mathrm{NaOH}=\frac{1}{20} \times 40=2 \mathrm{gm}$
25. If standard enthalpy of vaporization of CCl_{4} is 30.5 $\mathrm{kJ} / \mathrm{mol}$, find heat absorbed for vaporization of 294 gm of CCl_{4}. [Nearest integer] [in kJ]

Answer (58)

Sol. Vaporization of 1 mole CCl_{4} requires 30.5 kJ 294 gm is $\frac{294}{154}=1.91$ moles

Vaporization of 1.91 moles of CCl_{4} will require $30.5 \times 1.91 \mathrm{~kJ}=58.255 \mathrm{~kJ}$
26. Find out molality of $0.8 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution having density of solution equal to $1.02 \mathrm{gm} / \mathrm{ml}$ (Nearest integer)
Answer (1)
Sol. $m=\frac{1000 M}{10008-M(\mu)}$

$$
\begin{aligned}
& =\frac{1000(0.8)}{1000(1.02)-(0.8)(98)}=\frac{800}{1020-78.4} \\
& =\frac{800}{941.6}=0.849 \\
& \approx 1
\end{aligned}
$$

27. Aqueous solution of $\left[\mathrm{AuCl}_{4}\right]^{-}$on electrolysis by passing current for 10 minutes, the mass of Au deposited at Cathode is 1.97 gm . Find out current required (in A) (Nearest integer)

Answer (5)

Sol. $\mathrm{Au}^{3+}+\mathrm{Be}^{-} \longrightarrow \mathrm{Au}(\mathrm{s})$

$$
1.97 \mathrm{gm}
$$

$$
\begin{aligned}
& 0.03 \text { mole } \quad \frac{1.97}{197}=0.01 \mathrm{~mole} \\
& \text { Charge }
\end{aligned}=0.03 \times 96500
$$

28. If half life of radioactive bromine ($\mathrm{Br}-82$) is 36 hr , find percentage remaining after one day. [nearest integer]
Answer (63)
Sol. $\ln \frac{N_{0}}{N}=\lambda t=\frac{\ln 2}{36} \times 24$
$=\frac{2}{3} \ln 2$
$\Rightarrow \frac{\mathrm{N}_{0}}{\mathrm{~N}}=2^{2 / 3}$
$\Rightarrow \frac{\mathrm{N}}{\mathrm{N}_{0}}=\frac{1}{2^{2 / 3}}$
\% age remaining $=100 \frac{\mathrm{~N}}{\mathrm{~N}_{0}}=\frac{100}{2^{2 / 3}}=62.99$
29.
30.
