JEE-Main-29-01-2024 (Memory Based) [MORNING SHIFT]

Chemistry

Question: Which of the following pair will be formed by the decomposition of KMnO₄?

Options:

- (a) MnO₄, MnO₂
- (b) $K_2 MnO_4$, MnO_2
- (c) KMnO₄, MnO₂
- (d) MnO_2 , H_2O

Answer: (b) K₂ MnO₄, MnO₂

Solution:

Potassium permanganate forms dark purple (almost black) crystals which are isostructural with those of $KCLO_4$. The salt is not very soluble in water (6.4 g / 100 g of water at 293 K), but when heated it decomposes at 513 K.

 $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$

Question: Interaction b/w r. Bond & lone pair 1-s on adjacent atoms

Options:

- (a) Resonance
- (b) Hyper conjugation
- (c) Inductive Effect
- (d) Electronic Effect

Answer: (a) Resonance

Solution:

Question: Assertion. Electronegativity increase across a period

Reason. Effective increase in nuclear charge is more than effective shielding.

Options:

(a) Step 1: Electronegativity increase down the group 14 is to pb

(b) Step 2: Group 14 contains metals, non metals and also metalloids

Solution: Assertion true reason true Step: 1 is incorrect but Step: 2 is correct

Ouestion:

Column - I	Column - II
Ziegler Natta Catalyst	Rh
Blood Pigment	CO
Wilkinson Catalyst	Fe
Vitamin B12	Ti

Solution:

- $1 \rightarrow Ti$
- $2 \rightarrow \text{Fe}$
- $3 \rightarrow Rh$
- $4 \rightarrow Co$

Question: Appearance of Red colour on treatment with Na fusion extract of an organic compound with FeSO₄ in presence of conc. H₂SO₄ indicate element

Options:

- (a) N
- (b) Br
- (c) S
- (d) N & S

Answer: (d) N & S Solution:(d) N & S

Question: Cl- shows disproportionation in alkaline meol:

 $a cl_2 + b OH^- \rightarrow c cl O^- + d cl^- + H_2O$

Options:

- (a) 1 1 1 3
- (b) 3 6 2 4
- (c) 1 2 1 1
- (d) 2 4 1 3

Answer: (b)

Solution: $3Cl_2 + 6OH^- \rightarrow 2ClO^-_3 + 4Cl^- + 3H_2O$

Question: The correct set of 4 Quantum numbers of Valence e of Rb(37)

Options:

- (a) n = 5., l = 0., m = 1.,
- (b) n = 5., l = 0., m = 0.,
- (c) n = 5., l = 1., m = 0.,
- (d) n = 5., l = 1., m = 1.,

Answer:

Solution:

$$Rb \Rightarrow 5 sl$$

n = 5

$$1 = 0$$

$$Ml = 0$$

$$Mg = +1/2 \text{ or } -1/2$$

The electronic configuration of rubidium atom (Z = 37) is given by

$$Rb = [Kr] 5 s1$$

Hence, the quantum numbers for 5 s1 electron is given by

$$n = 5$$
, $I = 0$, $m = 0$, $s=+1/2$ or $-1/2$

Question: Type of amino acids obtained on hydrolysis of proteins

Options:

- (a) **a**
- (b) β

 $(c) \gamma \gamma$ $(d) \delta$

Answer: (a)

Solution: Alpha amino acid

Question: CO forms a bridge b/w M atoms

Options:

- (a) $Os_3 (CO)_{12}$
- (b) $Co_2(CO)_8$
- (c) Ru₃ (CO)₁₂
- (d) Mn₂ (CO)₁₀

Solution:

Question: Calculate the Molarity of a Solution having density = 1.25 g/ml. % (w/w) of Solute is 31.4% of H_2SO_4 solution

Options:

- (a) 4
- (b) 9
- (c) 8
- **(d)** 6

Answer: (a) Solution:

$$M = 10 \times \text{w/w \%} \times \text{d}$$

$$M_{\text{solute}}$$

$$M = 10 \times 31.4 \times 125 \text{ x } 100$$

$$98$$

$$= 4$$

Question: Find all quantum numbers Z = 37

Options:

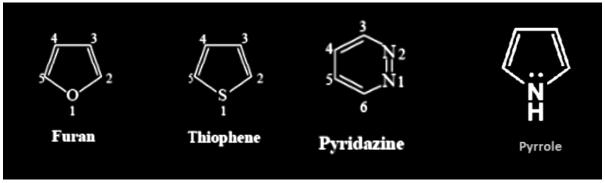
(a)
$$n = 5$$
 ., $l = 0$., $m = 1$.,

(b)
$$n = 5$$
., $l = 0$., $m = 0$.,

(c)
$$n = 5.$$
, $l = 1.$, $m = 0.$,

(d)
$$n = 5$$
., $l = 1$., $m = 1$.,

Answer: (a)


Question: Among the heterocyclic compound that contain Sulphur atom is :

Options:

- (a) Pyradizine
- (b) Furan
- (c) Thiophene
- (d) Pyrrole

Answer: (c)

Solution:

Question: Find weight of Zinc in Zinc sulphate electrolysis i=0.015 A t=15 minutes **Solution:**

$$Zn^{+2} + 2e^{-} \rightarrow Zn$$

$$1 \text{ mol } Zn = 65.3 \text{ gm} = 2 \text{ F}$$

Number of Faradays =
$$0.015 \times 15 \times 60$$

965

$$= 0.00013 \text{ g F}$$

= .0046

Question: Number of compound in which B.O = 1 and is paramagnetic

$$\text{He}_{2}^{+}$$
, O_{2}^{+} , O_{2}^{-2} , N_{2}^{+}

Answer: 0 Solution:

	B.O	Magnetic nature
He_2^+	0.5	Paramagnetic
O^+_2	1.5	Paramagnetic
O^{2-}_{2}	1	Diamagnetic

N_2^+ 2.5 Paramagnetic

Question: Number of compounds that gives positive fehling test Benzaldehyde, acetophenone, methanal

Answer: 1

Solution: Aliphatic aldehyde group. Aromatic aldehydes and ketones do not a give Fehling's

test.