JEE-Main-29-01-2024 (Memory Based)

 [EVENING SHIFT]
Maths

Question: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$
Find r-3 ; find $\alpha \beta \gamma$
Solution:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x$
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}|\cos x-\sin x| d x+\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}|(\sin x-\cos x)| d x$
$=+\sin x+\left.\cos x\right|_{\frac{\pi}{6}} ^{\frac{\pi}{4}}+-\cos x-\left.\sin x\right|_{\frac{\pi}{4}} ^{\frac{\pi}{3}}$
$=\left(\frac{1}{\sqrt{2}}-\frac{1}{2}+\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)$
$=2 \sqrt{2}-\sqrt{3}-1$

Question: If $\mathrm{P}(3,2,3) \mathrm{Q}(4,6,2) \mathrm{R}(7,3,2)$ are the vertices of $\Delta \mathrm{PQR}$, then find $\angle \mathrm{QPR}=$

Options:

(a) $\cos ^{-1} \frac{1}{18}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\cos ^{-1} \frac{7}{18}$

Solution:

$\overline{P Q}=(1,4,-1)$
$\overline{P R}=(4,1,-1)$
$\cos x=\frac{4+4+1}{18}$
$x=\frac{\pi}{3}$

Question: Area bounded by $0 \leq \mathrm{y} \leq \min \{\mathrm{x} 2+2,2 \mathrm{x}+2\}, \mathrm{x} \in[0,3]$, then 12 A is Solution:
$\int_{0}^{2} x^{2}+2+\int_{0}^{3} 2 x+2 \frac{x^{3}}{3}+2 x$
$\left|0^{2}+x^{2}+2 x\right| 2^{3} \frac{8}{3}+4+9+6-(4+4)$
$A=\frac{41}{2}$
$12 A=164$
Question: The remainder when $64^{32^{32}}$ is divided by 9 is \qquad .

Solution:

$$
\begin{aligned}
& 64^{32^{32}} \rightarrow 9 \\
& 64=1(\bmod 9) \\
& 64^{32}=1(\bmod 9) \\
& 64^{32^{32}}=1(\bmod 9)
\end{aligned}
$$

Question: $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$ holds for $x=\frac{m}{n}$ and $\alpha \beta$ are the roots of the equation $\mathrm{mx}^{2}-\mathrm{nx}-$ $\mathrm{m}+\mathrm{n}=0(\alpha>\beta)$ then α, β lies on the line

Options:

(a) $5 x-8 y=9$
(b) $5 x+8 y=9$
(c) $8 x+5 y=9$
(d) $8 x-5 y=9$

Solution:

$\cos \left(\sin ^{-1} x\right)=\frac{1}{9}$
$1-2 \sin ^{2}\left(\sin ^{-1} x\right)=\frac{1}{9}$
$2 x^{2}=\frac{8}{9} \rightarrow x= \pm \frac{2}{3}=-\frac{2}{3}$
$\frac{2}{3}: 2 x^{2}-3 x+1=9$
$\alpha=1, \beta=\frac{1}{2}$
$5 x+8 y=9$

Question: If $\alpha \& \beta$ are roots of the equation $x^{2}-\sqrt{6} x+3$ and where $\operatorname{lm}(\beta)<0$ if $\frac{\alpha^{99}}{\beta}+\beta^{98}=3^{n}(a+i b)$ then find $\mathrm{a}, \mathrm{b}, \mathrm{n}$.

Solution:

$x^{2}-\sqrt{6} x+3=0$
$\beta, \alpha=\frac{\sqrt{6} \pm \sqrt{6}}{2}=\frac{\sqrt{6}}{\sqrt{2}} \frac{(1 \pm i)}{\sqrt{2}}=\sqrt{3} e^{ \pm i \frac{\pi}{4}}$
$\alpha=\sqrt{3} e^{i \frac{\pi}{4}} ; \frac{\pi}{\beta}=i \alpha \beta=3$
$\frac{\alpha^{99}}{\beta}+\beta^{98}=\alpha^{98} i+\beta^{98}$
$=3^{49}[i \cdot i+(-j)] 3^{49}(-1-j)$
$n=49, a=-1, B=-1$
Other method $\frac{\alpha^{99}+\beta^{99}}{\beta}=\frac{\alpha^{100}}{3}+\beta^{98}=3^{49}(-1)+3^{49}(-i)$
Question: Distance of $(2,4)$ from the line $2 \mathrm{x}+\mathrm{y}+2=0$ measured parallel to the line $\sqrt{3} x+y+2=0$:

Solution:

$$
\begin{aligned}
& \left(2 \frac{\sqrt{3} r}{2}, 4+\frac{r}{2}\right) \\
& 2\left(2-\frac{\sqrt{3} r}{2}\right)+4+\frac{r}{2}+2=0 \\
& 10-\sqrt{3} r+\frac{r}{2}=0 \\
& 10=\left(\sqrt{3}-\frac{1}{2}\right) r \\
& r=\frac{20}{2 \sqrt{3}-1}
\end{aligned}
$$

Question: $\mathrm{a}_{1}, \mathrm{a}_{2} \ldots$...are in G.P. such that a , $=\frac{1}{8}, a_{1} \neq a_{2}$
and every term is equal to arithmetic mean of it's two successive terms. Find $\mathrm{S}_{20}-\mathrm{S}_{18}$.
Solution:
$a_{1}=\frac{a_{2}+a_{3}}{2}$
$a=\frac{a r+a r^{2}}{2}$
$r^{2}+r=2$
$r=-2$
$S_{20}-S_{18}$
$\frac{a\left[r^{20}-1\right]-a\left[r^{10}-1\right]}{r-1}$
$\frac{a}{r-1}\left[r^{20}-r^{18}\right]$
$\frac{1}{8(-3)}\left[2^{20}-2^{18}\right]$
$\frac{2^{15}}{-3}[3]=-2^{15}$

Question: $f(x)=2 x+3(x)^{\frac{2}{3}} . \mathrm{x} \in \mathrm{R}$.

Options:
(a) it has one maxima no minima
(b) it has one minima no maxima
(c) it has 2 maxima and 1 minima
(d) it has 1 maxima and 1 minima

Solution:

$f(x)=2 x+3(x)^{\frac{2}{3}}$
$f^{\prime}(x)=2+2 x^{-1 / 3}=0=2 \frac{\left(x^{1 / 3}+1\right)}{x^{1 / 3}}$
$x=-1$
$x=-1$ Maxima
$x=0$ Minima

Question: R : $\{1,2,3,4\} \rightarrow\{1,2,3,4\}$ if $(1,4),(1,2) \in R$
Find the number of possible equivalence relations.
Solution: $\mathrm{R}=\{(1,1),(2,2),(3,3),(4,4),(1,4),(4,1),(1,2),(2,1),(4,2),(2,4)\}$
Other $\{(1,2),(3,1),(2,3),(3,2),(4,3),(3,4)\}$
Either they all will come on not so 2 .

Question: There are 8 identical book and 4 identical shelfs Find the number of ways to arrange the book such that any shelf may be empty, every shelf can accommodate all the books
Options:
(a) 13
(b) 14
(c) 15
(d) 16

Solution:

$(8,0,0,0) \quad(5,3,0,0) \quad(4,3,1,0)$
$(7,1,0,0) \quad(5,2,1,0) \quad(4,2,2,0)$
$(6,2,0,0) \quad(5,2,1,0) \quad(4,2,2,0)$
$(6,1,1,0) \quad(4,4,0,0) \quad(3,3,1,1)$
$(2,2,2,2) \quad(3,3,2,0) \quad(3,2,2,1)$
Total 15 ways.
Question: Find the probability that number selected from 1 to 50 such that number is divisible by at least one out of 4,6 or by 7

Options:

(a) $\frac{21}{25}$
(b) $\frac{18}{50}$
(c) $\frac{8}{25}$
(d) $\frac{21}{25}$

Solution: $\mathrm{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
$=12+8+7-4-1-1+0$
$=21$
Probability $=\frac{21}{25}$

Question: A.B point of $\mathrm{L}_{1}, \& \mathrm{~L}_{2}$ of shortest distance points from origin OA.OB

