JEE Main 29 January 2024 Shift 1 Answer Key Mathematics

Q.1: What is the rank of the word GTWENTY in the dictionary?
A.1: 553
Q.2: If a die is rolled until 2 is obtained, then what is the probability that 2 is obtained on an even-numbered toss?
A. $2: \frac{5}{11}$
Q.3: A GP has 64 terms such that (Sn) total $=7(\mathrm{Sn})$ odd. Find the common ratio r .
A.3: $\mathrm{R}=6$
Q.4: $\left(\mathrm{C}_{1}{ }^{11} / 2\right)+\left(\mathrm{C}_{2}{ }^{11} / 3\right)+\ldots+\left(\mathrm{C}_{9}{ }^{11} / 10\right)=\mathrm{m} / \mathrm{n}$. Find $\mathrm{m}+\mathrm{n}$.
A.4: 2041
Q.5: If $\frac{d y}{d x}-\left(\frac{\sin 2 x}{1+\cos ^{2} x}\right) y=\frac{\sin x}{1+\cos ^{2} x}$ and $y(0)=0$, then $y\left(\frac{\pi}{2}\right)=$?
A.5: 1
Q.6: If $2 A^{3}=2^{21}$ and $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$, then find α if $(\alpha, \beta \in I)$
A.6: 5
Q.7:
$\lim _{x \rightarrow \pi / 2} \frac{\int_{x^{3}}^{\pi / 2^{3}} \cos t^{1 / 3} d t}{\left(x-\frac{\pi}{2}\right)^{2}}=$?
A.7: $\left(3 \pi^{\wedge} 2\right) / 8$

CollegeDekho

Q.8: If $4 \cos \theta+5 \sin \theta=1$, then find the number of all positive values of $\tan \theta$ where $\theta \in(-$ $\pi / 2, \pi / 2$).

A.8: 2

Q.9: If the given data $60,60,44,58,68, \alpha, \beta, 56$ has a mean of 58 and a variance of 66.2 , then find $\alpha^{2}+\beta^{2}$.
A.9: 7181.6
Q.10: If $|\mathrm{z}+1|=\alpha \mathrm{z}+\beta(\mathrm{i}+1)$ and $\mathrm{z}=(1 / 2)-2 \mathrm{i}$, then find $\alpha+\beta$.
A.10: 6
Q.11: In an increasing arithmetic progression $a_{1}, a_{2}, \ldots, a_{n}$ if $a_{6}=2$ and the product of a_{1}, a_{5} and a_{4} is greatest, then the value of d is equal to?
A.11: 1.6
Q.12: If relation R : $(a, b) R(c, d)$ is only if $a d-b c$ is divisible by $5,(a, b, c, d \in Z)$ then R is:
i. Reflexive
ii. Symmetric, Reflexive but not Transitive
iii. Reflexive, Transitive but not Symmetric
iv. Equivalence Relation
A.12: Symmetric, Reflexive but not Transitive
Q.13: 4. $f(x)=\left\{\begin{aligned} 2+2 x & ; x \in(-1,0) \\ 1-\frac{x}{3} & ; x \in[0,3)\end{aligned} \quad\right.$ and $g(x)=\left\{\begin{aligned} x & ; x \in[0,1) \\ -x & ; x \in(-3,0)\end{aligned}\right.$

Find the range of $\operatorname{fog}(x)$.
A.13: $(0,1)$
Q.14: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{x}}+\frac{1+\sin ^{2} x}{1+e^{\sin x^{2023}}}\right) d x=\frac{\pi}{4}(\pi+\alpha)-2$

Find α.
A.14: $\alpha=3$

CollegeDekho目

Q.15: $\int \frac{(\sin x-\cos x) \sin ^{2} x}{\sin x \cos ^{2} x+\tan x \sin ^{3} x} d x=$?
A.15: $\frac{\ln \left|\sin ^{3} x+\cos ^{3} x\right|}{2}+C$
Q.16. $f(x)=\frac{\left(2^{x}+2^{-x}\right)(\tan x) \sqrt{\tan ^{-1}\left(2 x^{2}-3 x+1\right)}}{\left(7 x^{2}-3 x+1\right)^{3}}$

Find $f^{\prime}(0)$.
A.16: $\sqrt{\pi}$
Q.17: Find the area under the curve $x^{2}+y^{2}=169$ and below the line $5 x-y=13$.
A. $17: \frac{169 \pi}{4}-\frac{65}{2}+\frac{169}{2} \sin ^{-1} \frac{12}{13}$
Q.18: a, b, c are non-zero vectors and b and c are non-collinear vectors. $a+5 b$ is collinear with c and $b+6 c$ is collinear with a. If $a+\alpha b+\beta c=0$, then $\alpha+\beta=$?
A.18: 35

