

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Why KMnO₄ shows colour?
 - (1) Due to d-d transition
 - (2) Due to metal to ligand charge transfer
 - (3) Due to ligand to metal charge transfer
 - (4) Due to F-centre

Answer (3)

- **Sol.** Colour of KMnO₄ is due to LMCT (Ligand to metal charge transfer.
- 2. C is added to solution of A and B, find mole fraction of C.

 $\frac{n_{C}}{n_{A} + n_{B}}$

(1)
$$\frac{n_{C}}{n_{A} + n_{B} + n_{C}}$$
 (2) $\frac{n_{C}}{n_{A} \cdot n_{B} + n_{C}}$

 $(3) \quad \frac{n_C}{n_A \cdot n_C + n_B} \tag{4}$

Answer (1)

Sol. In a mixture of A, B and C

Mole fraction = $\frac{n_C}{n_A + n_B + n_C}$

- 3. IUPAC name of compound $CH_3 CH C \equiv CH$ is I CH_3
 - (1) 2-Methylbutyne
 - (2) 3-Methylbut-1-yne
 - (3) 2-methylbutene
 - (4) 3-methylbutane

Answer (2)

Sol.
$$CH_{3}^{4} - CH_{3}^{3} - CH_{2}^{2} = CH_{1}^{1}$$

3-Methylbut-1-yne

- 4. Which of the following solution will have lowest freezing point?
 - (1) 180 g glucose in 1 L solution
 - (2) 180 g of benzoic acid in 1 L solution
 - (3) 180 g of CH₃COOH in 1 L solution
 - (4) 180 g sucrose in 1 L solution

Answer (3)

Sol. $\Delta T_f = (i) (k_f) (m)$

Molality is highest for 180 gm of CH₃COOH in 1 litre solution.

5. Arrange the following according to their decreasing oxidising power.

$$BrO_4^-, IO_4^-, CIO_4^-$$

(1)
$$CIO_4^- > IO_4^- > BrO_4^-$$

(2)
$$BrO_4^- > IO_4^- > CIO_4^-$$

(3)
$$IO_4^- > BrO_4^- > CIO_4^-$$

(4)
$$BrO_4^- > CIO_4^- > IO_4^-$$

Answer (2)

Sol. The reduction potential of BrO_4^- , IO_4^- and CIO_4^- are

1.75 V, 1.65 V and 1.20 V respectively. Thus $BrO_{4}^{\scriptscriptstyle -},$

has the highest oxidising power and CIO_4^- has the lowest oxidising power among the given perhalates.

- 6. Salicylaldehyde forms from phenol by reacting with which reagent?
 - (1) CO₂, NaOH
 - (2) CHCl₃, NaOH
 - (3) CCl₄, NaOH
 - (4) H₂O, H⁺

Answer (2)

Sol. In Reimer Tiemann reaction phenol reacts with CHCl₃, NaOH to give salicylaldehyde.

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening

 Complete the following reactions and find major products A and B

Answer (2)

Correct answer is option (2)

8. What is the correct IUPAC name of the given compound?

$$CH_3 - CH - CH_2 - CH_2 - CN$$

- (1) 4-Aminopentanenitile
- (2) 2-Aminopentanenitile
- (3) 3-Aminobutanenitile
- (4) 2-Aminobutanenitrile

Answer (1)

Sol.
$$CH_{3}^{5} - CH_{2}^{4} - CH_{2}^{3} - CH_{2}^{2} - CH_{2}^{1} - CN_{1}^{1}$$

 H_{2}^{1}

4-Aminopentanenitile

9. In the given reactions A and B respectively are:

$$CrO_2Cl_2 + NaOH \longrightarrow A + NaCl + H_2O$$

$$H_2SO_4 + A + H_2O_2 \longrightarrow B$$

- (1) Na₂CrO₄ and CrO₅
- (2) CrO₅ and Na₂CrO₄
- (3) Na₂CrO₄ and CrO₃
- (4) Na₂Cr₂O₇ and Na₂CrO₄

Answer (1)

Sol.
$$CrO_2Cl_2 + NaOH \longrightarrow \boxed{Na_2CrO_4} + NaCl + H_2O$$

$$Na_{2}CrO_{4} + H_{2}O_{2} + H_{2}SO_{4} \longrightarrow$$

$$\boxed{CrO_{5}}_{(B)} + Na_{2}SO_{4} + H_{2}O_{4}$$

 $\therefore A = Na_2CrO_4$

 $B = CrO_5$

- 10. Which of the following has square pyramidal shape?
 - (1) PCl₅ (2) BrF₅ (3) PF₅ (4) [Ni(CN)₄]²⁻

Answer (2)

Sol. BrF_5 has 1 lone pair and 5 bond pairs

So, geometry is octahedral, shape is square pyramidal.

11. Find out correct order of stability for given carbocations

Answer (2)

Sol. Stability of carbocation : $3^\circ > 2^\circ > 1^\circ > methyl$

12. Statement I : Halogen attached to bulky group undergo $S_N 2$ reaction.

Statement I : Secondary alkyl halide react with excess C_2H_5OH undergo S_N1 reaction.

- (1) Both statements are true
- (2) Statement I is true, II is false
- (3) Both statements are false
- (4) Statement I is false, Statement II is true

Answer (4)

Sol. When halogen attached to bulky group back side attack is not possible so S_N2 reaction does not takes place.

Secondary alkyl halide reacts with excess of ethanol undergo S_N1 reaction.

13. Consider the following statements.

Statement I : Since electronegativity of F > H, so dipole moment of NF₃ > NH₃.

Statement II : Lone pair dipole in NH_3 is not in the direction of resultant bond dipole while in case of NF_3 the lone pair dipole is in the direction of resultant bond dipole.

(1)	SI : True	(2)	SI : True
	SII : False		SII : True
(3)	SI : False	(4)	SI : False
	SII : False		SII : True

Answer (3)

Sol. Dipole moment of NH₃ > NF₃ because in case of NH₃ the lone pair dipole is in the direction of resultant bond dipole.

 Magnetic moment due to the motion of the electron in nth orbit of Bohr atom is proportional to n^x. The value of x is

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening

- (1) 0
- (2) 1
- (3) 2
- (4) 3

Answer (2)

Sol. Magnetic moment $\mu = \frac{e}{2m} \times L$

Where L is the angular momentum

$$L = \frac{nh}{2\pi}$$

$$\therefore \quad \mu \propto n$$

A and B respectively are :

(2)
$$A = \bigcirc B = HO \multimap N = N \multimap OH$$

(3)
$$A = \bigcirc O$$
, $B = \bigcirc OH$
 $N = N - Ph$

N I I I

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening

- 16. Which of the following is a purification method which is based on solubility of compound.
 - (1) Distillation
 - (2) Sublimation
 - (3) Crystallization
 - (4) Column Chromatography

Answer (3)

- **Sol.** Insoluble impurities can be separated by filtration followed by crystallization where soluble compound crystallizes in pure form.
- Statement 1 : H₂Te is more acidic than H₂S
 Statement 2 : H₂Te has more B.D.E than H₂S
 - (1) Statement 1 and 2 both are correct
 - (2) Statement 1 and 2 both are incorrect
 - (3) Statement 1 is incorrect and statement 2 is correct
 - (4) Statement 1 is correct and statement 2 is incorrect

Answer (4)

Sol. H_2Te has less bond dissociation energy than H_2S , that's why H_2Te is more acidic than H_2S

- 18. What is the structure of $Mn_2(CO)_{10}$?
 - (1) Two square pyramidal units joined by bridgingCO ligands
 - (2) Two square pyramidal units joined by Mn-Mn bond
 - (3) Two tetrahedral units joined by Mn-Mn bond
 - (4) Two square planar units joined by Mn-Mn bond

Answer (2)

19. What are the products of the reaction of mchlorobenzaldehyde with 50% KOH?

Answer (1)

Sol. The reaction follows the Cannizzaro reaction mechanism.

- 11 -

20. **Statement-I:** There is regular increase in chemical reactivity from group 1 to group 18.

Statement-II: Oxides of group-1 elements are basic and oxide of group 17 are acidic

- (1) Both statement-I and statement-II are true
- (2) Statement-I is true and statement-II is false
- (3) Statement-I is false and statement-II is true
- (4) Statement-I and statement-II both are false

Answer (3)

Sol. The chemical reactivity of elements decreases and then increases from group 1 to 18 generally metal oxides are basic and nonmetal oxides are acidic.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

How many spectral lines are obtained when an electron in He⁺ ion Jumps from n = 5 to n = 1.

Answer (10)

Sol. Number of spectral lines

$$=\frac{(\Delta n)(\Delta n+1)}{2}$$
$$=\frac{(4)(5)}{2}=10$$

22. What is the value of enthalpy change (Δ H) (in kJ/mole) for given reaction-

$$3C(s) + Fe_2O_3(s) \rightarrow 2Fe(s) + 3CO(g)$$

Given :

$$2Fe(s) + \frac{3}{2}O_2(g) \rightarrow Fe_2O_3(s) \quad \Delta H^\circ = -824 \text{ kJ/mol}$$

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g) \quad \Delta H^\circ = -110 \text{ kJ/mol}$$

Answer (494)

Sol. △H° = 3(-110) - (-824) = -330 + 824 = 494(kJ/mole) 23. Number of elements which give flame test from following

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening

Sr, Cu, Co, Ca, Ni, Fe

Answer (4)

- $\textbf{Sol.} \ Cu: Green \ with \ blue \ centre$
 - Ca : Brick red
 - Sr : Crimson red

Fe : Gold, when very hot such as an electric arc bright blue, or green turning to orange-brown

24. Consider the given reaction

 $N_2O_4 \rightarrow 2NO_2$

Initial conc. of $N_2O_4 = 3M$

Concentration of N_2O_4 is 2.75 M

after 30 sec., find out rate of formation of NO_2 during this interval (in mol lit⁻¹ min⁻¹) (Nearest integer)

Answer (1)

Sol. Rate of consumption of N₂O₄ = $\frac{3-2.75}{30}$

Rate of formation of NO₂ = $\frac{0.25}{30} \times 2 \times 60$

= 1 mol lit⁻¹ min⁻¹

25. How many of the following shows disproportionation reactions?

 H_2O_2 , Ag, Cu^+ , K^+ , F_2 , Cl_2 , ClO_3^-

Answer (4)

Sol. Atom in its highest or lowest oxidation state does not disproportionate.

$$\begin{split} H_2O_2, Cu^+, Cl_2, ClO_3^-\\ H_2O_2 &\rightarrow O^{-1} \text{ can go to } O^{2-} \text{ and } O_2\\ Cu^+ &\rightarrow Cu = +1 \text{ to } +2 \text{ and } 0\\ {}^0Cl_2 &\rightarrow \text{ to } Cl^{-1}\text{ and } +1, +3, +5, +7\\ {}^{+5}ClO_3^- &\rightarrow Cl^{-1} \text{ and } Cl^{+7} \end{split}$$

26.

27. 28.

29.

30.

- 12 -