CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Why KMnO_{4} shows colour?
(1) Due to d-d transition
(2) Due to metal to ligand charge transfer
(3) Due to ligand to metal charge transfer
(4) Due to F-centre

Answer (3)
Sol. Colour of KMnO_{4} is due to LMCT (Ligand to metal charge transfer.
2. C is added to solution of A and B, find mole fraction of C.
(1) $\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
(2) $\frac{n_{C}}{n_{A} \cdot n_{B}+n_{C}}$
(3) $\frac{n_{C}}{n_{A} \cdot n_{C}+n_{B}}$
(4) $\frac{n_{C}}{n_{A}+n_{B}}$

Answer (1)

Sol. In a mixture of A, B and C
Mole fraction $=\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
3. IUPAC name of compound $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{C} \equiv \mathrm{CH}$ is
(1) 2-Methylbutyne
(2) 3-Methylbut-1-yne
(3) 2-methylbutene
(4) 3-methylbutane

Answer (2)
Sol.

3-Methylbut-1-yne
4. Which of the following solution will have lowest freezing point?
(1) 180 g glucose in 1 L solution
(2) 180 g of benzoic acid in 1 L solution
(3) 180 g of $\mathrm{CH}_{3} \mathrm{COOH}$ in 1 L solution
(4) 180 g sucrose in 1 L solution

Answer (3)
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=(\mathrm{i})\left(\mathrm{k}_{\mathrm{f}}\right)(\mathrm{m})$
Molality is highest for 180 gm of $\mathrm{CH}_{3} \mathrm{COOH}$ in 1 litre solution
5. Arrange the following according to their decreasing oxidising power.
$\mathrm{BrO}_{4}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{ClO}_{4}^{-}$
(1) $\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}$
(2) $\mathrm{BrO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(3) $\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(4) $\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}$

Answer (2)

Sol. The reduction potential of $\mathrm{BrO}_{4}^{-}, \mathrm{IO}_{4}^{-}$and ClO_{4}^{-}are $1.75 \mathrm{~V}, 1.65 \mathrm{~V}$ and 1.20 V respectively. Thus BrO_{4}^{-}, has the highest oxidising power and ClO_{4}^{-}has the lowest oxidising power among the given perhalates.
6. Salicylaldehyde forms from phenol by reacting with which reagent?
(1) $\mathrm{CO}_{2}, \mathrm{NaOH}$
(2) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$
(3) $\mathrm{CCl}_{4}, \mathrm{NaOH}$
(4) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$

Answer (2)

Sol. In Reimer Tiemann reaction phenol reacts with $\mathrm{CHCl}_{3}, \mathrm{NaOH}$ to give salicylaldehyde.
7. Complete the following reactions and find major products A and B

(1)

(2)

(3) A

(4)

Answer (2)

Sol.

Correct answer is option (2)
8. What is the correct IUPAC name of the given compound?

(1) 4-Aminopentanenitile
(2) 2-Aminopentanenitile
(3) 3-Aminobutanenitile
(4) 2-Aminobutanenitrile

Answer (1)

Sol.

4-Aminopentanenitile
9. In the given reactions A and B respectively are:
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{A}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{A}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{~B}$
(1) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ and CrO_{5}
(2) CrO_{5} and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
(3) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ and CrO_{3}
(4) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$

Answer (1)
Sol.

$$
\underset{\underset{(\mathrm{B})}{\mathrm{Na}_{2} \mathrm{CrO}_{4}}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow}{\longrightarrow \mathrm{CrO}_{2} \mathrm{SO}_{4}}+\mathrm{H}_{2} \mathrm{O}
$$

$\therefore \quad \mathrm{A}=\mathrm{Na}_{2} \mathrm{CrO}_{4}$
$\mathrm{B}=\mathrm{CrO}_{5}$
10. Which of the following has square pyramidal shape?
(1) PCl_{5}
(2) BrF_{5}
(3) PF_{5}
(4) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer (2)
Sol. BrF_{5} has 1 lone pair and 5 bond pairs

So, geometry is octahedral, shape is square pyramidal.
11. Find out correct order of stability for given carbocations
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
(I)
$\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{\mathrm{CH}}$
(II)
$\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{3}$
(III)
(IV)
(1) II $>$ I $>$ III $>$ IV
(2) I $>$ II $>$ III $>$ I V
(3) IV $>$ III $>$ II $>$ I
(4) I $>$ II $>$ IV $>$ III

Answer (2)
Sol. Stability of carbocation : $3^{\circ}>2^{\circ}>1^{\circ}>$ methyl
12. Statement I : Halogen attached to bulky group undergo $\mathrm{S}_{\mathrm{N}} 2$ reaction.

Statement I : Secondary alkyl halide react with excess $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ undergo $\mathrm{S}_{\mathrm{N}} 1$ reaction.
(1) Both statements are true
(2) Statement I is true, II is false
(3) Both statements are false
(4) Statement I is false, Statement II is true

Answer (4)

Sol. When halogen attached to bulky group back side attack is not possible so $\mathrm{S}_{\mathrm{N}} 2$ reaction does not takes place.

Secondary alkyl halide reacts with excess of ethanol undergo $S_{N} 1$ reaction.
13. Consider the following statements.

Statement I : Since electronegativity of $F>H$, so dipole moment of $\mathrm{NF}_{3}>\mathrm{NH}_{3}$.

Statement II : Lone pair dipole in NH_{3} is not in the direction of resultant bond dipole while in case of NF_{3} the lone pair dipole is in the direction of resultant bond dipole.
(1) SI : True
SII : False
(2) SI : True
SII : True
(3) SI : False
SII : False
(4) SI : False
SII : True

Answer (3)

Sol. Dipole moment of $\mathrm{NH}_{3}>\mathrm{NF}_{3}$ because in case of NH_{3} the lone pair dipole is in the direction of resultant bond dipole.

14. Magnetic moment due to the motion of the electron in $n^{\text {th }}$ orbit of Bohr atom is proportional to n^{x}. The value of x is
(1) 0
(2) 1
(3) 2
(4) 3

Answer (2)
Sol. Magnetic moment $\mu=\frac{e}{2 m} \times L$

Where L is the angular momentum
$L=\frac{n h}{2 \pi}$
$\therefore \quad \mu \propto \mathrm{n}$
15.

A and B respectively are :
(1)

(2)

(3)

(4)

Answer (1)

Sol.

(B)
16. Which of the following is a purification method which is based on solubility of compound.
(1) Distillation
(2) Sublimation
(3) Crystallization
(4) Column Chromatography

Answer (3)

Sol. Insoluble impurities can be separated by filtration followed by crystallization where soluble compound crystallizes in pure form.
17. Statement $1: \mathrm{H}_{2} \mathrm{Te}$ is more acidic than $\mathrm{H}_{2} \mathrm{~S}$

Statement 2 : $\mathrm{H}_{2} \mathrm{Te}$ has more B.D.E than $\mathrm{H}_{2} \mathrm{~S}$
(1) Statement 1 and 2 both are correct
(2) Statement 1 and 2 both are incorrect
(3) Statement 1 is incorrect and statement 2 is correct
(4) Statement 1 is correct and statement 2 is incorrect

Answer (4)

Sol. $\mathrm{H}_{2} \mathrm{Te}$ has less bond dissociation energy than $\mathrm{H}_{2} \mathrm{~S}$, that's why $\mathrm{H}_{2} \mathrm{Te}$ is more acidic than $\mathrm{H}_{2} \mathrm{~S}$
18. What is the structure of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$?
(1) Two square pyramidal units joined by bridging CO ligands
(2) Two square pyramidal units joined by $\mathrm{Mn}-\mathrm{Mn}$ bond
(3) Two tetrahedral units joined by $\mathrm{Mn}-\mathrm{Mn}$ bond
(4) Two square planar units joined by $\mathrm{Mn}-\mathrm{Mn}$ bond

Answer (2)

Sol.

19. What are the products of the reaction of m chlorobenzaldehyde with $50 \% \mathrm{KOH}$?
(1)

(2)

(3)

(4)

Answer (1)
Sol. The reaction follows the Cannizzaro reaction mechanism.

20. Statement-I: There is regular increase in chemical reactivity from group 1 to group 18.

Statement-II: Oxides of group-1 elements are basic and oxide of group 17 are acidic
(1) Both statement-I and statement-II are true
(2) Statement-I is true and statement-II is false
(3) Statement-I is false and statement-II is true
(4) Statement-I and statement-II both are false

Answer (3)

Sol. The chemical reactivity of elements decreases and then increases from group 1 to 18 generally metal oxides are basic and nonmetal oxides are acidic.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. How many spectral lines are obtained when an electron in He^{+}ion Jumps from $\mathrm{n}=5$ to $\mathrm{n}=1$.

Answer (10)

Sol. Number of spectral lines

$$
\begin{aligned}
& =\frac{(\Delta n)(\Delta n+1)}{2} \\
& =\frac{(4)(5)}{2}=10
\end{aligned}
$$

22. What is the value of enthalpy change $(\Delta \mathrm{H})$ (in $\mathrm{kJ} /$ mole) for given reaction-

$$
3 \mathrm{C}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g})
$$

Given :

$$
\begin{aligned}
& 2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}^{\circ}=-824 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-110 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Answer (494)

Sol. $\Delta \mathrm{H}^{\circ}=3(-110)-(-824)$

$$
=-330+824=494(\mathrm{~kJ} / \mathrm{mole})
$$

23. Number of elements which give flame test from following
$\mathrm{Sr}, \mathrm{Cu}, \mathrm{Co}, \mathrm{Ca}, \mathrm{Ni}, \mathrm{Fe}$
Answer (4)
Sol. Cu: Green with blue centre
Ca: Brick red
Sr : Crimson red
Fe : Gold, when very hot such as an electric arc bright blue, or green turning to orange-brown
24. Consider the given reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$
Initial conc. of $\mathrm{N}_{2} \mathrm{O}_{4}=3 \mathrm{M}$
Concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 2.75 M
after 30 sec., find out rate of formation of NO_{2} during this interval (in mol $\mathrm{lit}^{-1} \mathrm{~min}^{-1}$) (Nearest integer)
Answer (1)
Sol. Rate of consumption of $\mathrm{N}_{2} \mathrm{O}_{4}=\frac{3-2.75}{30}$
Rate of formation of $\mathrm{NO}_{2}=\frac{0.25}{30} \times 2 \times 60$

$$
=1 \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}
$$

25. How many of the following shows disproportionation reactions?
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Ag}, \mathrm{Cu}^{+}, \mathrm{K}^{+}, \mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{ClO}_{3}^{-}$

Answer (4)

Sol. Atom in its highest or lowest oxidation state does not disproportionate.
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}^{+}, \mathrm{Cl}_{2}, \mathrm{ClO}_{3}^{-}$
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}^{-1}$ can go to O^{2-} and O_{2}
$\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}=+1$ to +2 and 0
${ }^{0} \mathrm{Cl}_{2} \rightarrow$ to Cl^{-1} and $+1,+3,+5,+7$
$\stackrel{+5}{\mathrm{ClO}_{3}^{-}} \rightarrow \mathrm{Cl}^{-1}$ and Cl^{+7}
26.
27.
28.
29.
30.

