MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Bag A contains 7 white balls and 3 red balls. Bag B contains 3 white balls and 2 red balls. A ball is chosen randomly and found to be red then find the probability that it is taken from bag A.
(1) $\frac{7}{20}$
(2) $\frac{1}{2}$
(3) $\frac{3}{7}$
(4) $\frac{1}{5}$

Answer (3)

Sol. Bag A contains 7 white balls and 3 red balls.
Bag B contains 3 white balls and 2 red balls.
Probability that red ball is chosen from bag
$A=P\left(\frac{R}{A}\right)=\frac{3}{10}$
Probability that red ball is chosen from bag B

$$
=P\left(\frac{R}{A}\right)=\frac{2}{5}
$$

Probability that red ball is chosen from bag A

$$
\begin{aligned}
& =\frac{\frac{3}{10} \times \frac{1}{2}}{\frac{3}{10} \times \frac{1}{2}+\frac{2}{5} \times \frac{1}{2}}=\frac{\frac{3}{20}}{\frac{3}{20}+\frac{2}{10}} \\
& =\frac{3}{7}
\end{aligned}
$$

2. Given $|\vec{b}|=2,|\vec{b} \times \vec{a}|=2$

Then $|\vec{b} \times \vec{a}-\vec{b}|^{2}$ is
(1) 0
(2) 8
(3) 1
(4) 10

Answer (2)

Sol. $|\vec{b} \times \vec{a}-\vec{b}|^{2}=|\vec{b} \times \vec{a}|^{2}+\left|b^{2}\right|-2(\vec{b} \times \vec{a}) \cdot \vec{b}$

$$
\begin{aligned}
& =4+4 \quad[\because|\vec{b} \times \vec{a}|=2 \&|\vec{b}|=2] \\
& =8
\end{aligned}
$$

3. If $f(x)=\ln \left(\frac{2 x+3}{4 x^{2}-x-3}\right)+\cos ^{-1}\left(\frac{2 x+1}{x+2}\right)$.

If domain of $f(x)$ is $[\alpha, \beta)$, then $5 \alpha-4 \beta$ is
(1) -2
(2) 3
(3) -4
(4) 1

Answer (1)

Sol. $\frac{2 x+3}{4 x^{2}-x-3}>0$
$\frac{2 x+3}{4 x^{2}-4 x+3 x-2}>0$
$\frac{2 x+3}{(4 x+3)(x-1)}>0$
$\Rightarrow x \in\left(\frac{-3}{2}, \frac{-3}{4}\right) \cup(1, \infty)$
Now
$-1 \leq \frac{2 x+1}{x+2} \leq 1$
$\frac{2 x+1}{x+2}+1 \geq 0$ and $\frac{2 x+1}{x+2}-1 \leq 0$
$\frac{3 x+3}{x+2} \geq 0$ and $\frac{x-1}{x+2} \leq 0$
$\Rightarrow x \in(-\infty,-2) \cup[-1, \infty)$

$$
\begin{equation*}
x \in(-2,1] \tag{2}
\end{equation*}
$$

By (2) and (3)

$$
\begin{equation*}
x \in[-1,1] \tag{4}
\end{equation*}
$$

And By (1) and (4)

$$
\begin{aligned}
& x \in\left[-1, \frac{-3}{4}\right) \\
& 5 \alpha-4 \beta=-2
\end{aligned}
$$

4. If $f(x)=\frac{x}{\left(1+x^{4}\right)^{1 / 4}}$ and $g(x)=f(f(f(f(x))))$ then $\int_{0}^{\sqrt{2 \sqrt{5}}} x^{2} g(x) d x$ is equal to
(1) $\frac{11}{6}$
(2) $\frac{13}{6}$
(3) $\frac{2}{5}$
(4) $\frac{17}{6}$

Answer (2)

Sol. $\quad f(x)=\frac{x}{\left(1+x^{4}\right)^{1 / 4}}$

$$
\begin{aligned}
& f(f(x))=\frac{x}{\left(1+2 x^{4}\right)^{1 / 4}} \\
& f(f(f(x)))=\frac{x}{\left(1+3 x^{4}\right)^{1 / 4}}
\end{aligned}
$$

$\therefore \quad g(x)=f(f(f(f(x))))=\frac{x}{\left(1+4 x^{4}\right)^{1 / 4}}$
$\therefore \quad I=\int_{0}^{\sqrt{2 \sqrt{5}}} \frac{x^{3}}{\left(1+4 x^{4}\right)^{1 / 4}} d x$
Let $1+4 x^{4}=t^{4} \Rightarrow 4 x^{3} d x=t^{3} d t$
$\therefore \quad I=\int_{1}^{3} \frac{t^{2}}{4} d t=\frac{1}{12}\left(3^{3}-1^{3}\right)=\frac{13}{6}$
5. If $1^{\text {st }}$ term of a GP is ' a ' and $3^{\text {rd }}$ term is ' b ' and in $2^{\text {nd }}$ GP $1^{\text {st }}$ term is ' a ' and $5^{\text {th }}$ term is ' b ' and $11^{\text {th }}$ term of $1^{\text {st }}$ GP common to which term of $2^{\text {nd }}$ GP
(1) 24
(2) 25
(3) 21
(4) 18

Answer (3)
Sol. First term of $1^{\text {st }} \mathrm{GP}$ is a and common ratio be r_{1} First term of $2^{\text {nd }}$ GP is a and common ratio be r_{2}
$3^{\text {rd }}$ term of $1^{\text {st }} \mathrm{GP}=a r_{1}^{2}=b$
$5^{\text {th }}$ term of $2^{\text {nd }}$ GP $=a r_{2}^{4}=b$
$\Rightarrow \quad a r_{1}^{2}=a r_{2}^{4}$
$\Rightarrow r_{1}= \pm r_{2}^{2}$
$11^{\text {th }}$ term of $1^{\text {st }} \mathrm{GP}=a r_{1}^{10}$
$=a\left(\pm r_{2}^{2}\right)^{10}$
$=a r_{2}^{20}$
Hence, it will be common to $21^{\text {st }}$ term of $2^{\text {nd }}$ GP
6. $z^{1985}+z^{100}+1=0$ and
$z^{3}+2 z^{2}+2 z+1=0$
then number of common roots of equation is
(1) 1
(2) 2
(3) 3
(4) 4

Answer (2)
Sol. The roots of equation $z^{1985}+z^{100}+1=0$ be $\omega \& \omega^{2}$ and also satisfies $z^{3}+2 z^{2}+2 z+1=0$
$\therefore \omega \& \omega^{2}$ are common solutions.
(ω is cube root of unity)
$\therefore 2$ solutions
7. If $x^{2}-y^{2}+2 h x y+2 g x+2 f y+c=0$ is the locus of points such that it is equidistance from the lines $x+2 y-8=0$ and $2 x+y+7=0$, then value of $h+g+f+c$ is
(1) 15
(2) -15
(3) 20
(4) -20

Answer (3)
Sol. Combined equation of angle bisectors of lines is

$$
\begin{aligned}
& {\left[\left(\frac{2 x+y+7}{\sqrt{5}}\right)-\left(\frac{x+2 y-8}{\sqrt{5}}\right)\right]} \\
& \Rightarrow(2 x+y+7)^{2}-(x+2 y-8)^{2}=0 \\
& \Rightarrow(3 x+3 y-1)(x-y+15)=0 \\
& \Rightarrow 3 x^{2}-3 y^{2}+15+44 x+46 y+0 x y=0 \\
& \Rightarrow x^{2}-y^{2}+\frac{44 x}{3}+\frac{46 y}{3}+5=0 \\
& \Rightarrow h=0, g=\frac{22}{3}, f=\frac{23}{3}, c=5 \\
& \Rightarrow h+f+g+c=\frac{45}{3}+5=20 \\
& \text { 8. } \left.A=\left[\begin{array}{ll}
x & 0 \\
0 & y \\
0 & 0 \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
z
\end{array}\right]=0 \\
& \frac{x}{\sin \theta}=\frac{y}{\sin \left(\theta+\frac{2 \pi}{3}\right)}=\frac{z}{\sin \left(\theta+\frac{4 \pi}{3}\right)}
\end{aligned}
$$

Then
Statement 1: $T_{r}(A)=0$
Statement 2: $T_{r}(\operatorname{adj}(\operatorname{adj} A))$
(1) Statement $1 \& 2$ are true
(2) Statement 1 is true
(3) Statement 2 is true
(4) None of these

Answer (1)
Sol. $x=k \sin \theta$
$y=k \sin \left(\theta+\frac{2 \pi}{3}\right)$
$z=k \sin \left(\theta+\frac{4 \pi}{3}\right)$
$x+y+z=k\left[\sin \theta+\sin \left(\theta+\frac{2 \pi}{3}\right)+\sin \left(\theta+\frac{4 \pi}{3}\right)\right]$

$$
=0
$$

\therefore Statement 1 is correct
$\operatorname{adj} A=\left[\begin{array}{ccc}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$(\operatorname{adj}(\operatorname{adj} A))=\left[\begin{array}{ccc}x^{2} y z & 0 & 0 \\ 0 & y^{2} x z & 0 \\ 0 & 0 & x y z^{2}\end{array}\right]$
$\operatorname{Tr}(\operatorname{adj}(\operatorname{adj} A))=x y z[x+y+z]=0$

$$
=0
$$

$\therefore \quad$ Statement 2 is true
9. If $S_{n}=3+7+11+\ldots$. upto n terms

And $40<\frac{6}{n(n+1)} \sum_{k=1}^{n} S_{k}<45$, then n is
(1) 9
(2) 10
(3) 11
(4) 12

Answer (1)
Sol. $S_{n}=n(2 n+1)$

$$
\begin{aligned}
& \sum_{k=1}^{n} S_{k}=\sum_{k=1}^{n}\left(2 k^{2}+k\right) \\
& \quad=2 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} \\
& \therefore \frac{6}{n(n+1)} \sum_{k=1}^{n} S_{k} \\
& =\frac{6}{n(n+1)} \cdot n(n+1)\left(\frac{2 n+1}{3}+\frac{1}{2}\right) \\
& =4 n+2+3 \\
& =4 n+5 \\
& \because 40<\frac{6}{n(n+1)} \sum_{k=1}^{n} S_{k}<45 \\
& 40<4 n+5<45 \\
& 3 s<4 n<40 \\
& \therefore n=9
\end{aligned}
$$

10. In a paper there are 3 sections A, B and C which has 8,6 and 6 questions each. A student have to attempt 15 questions such that they have to attempt atleast 4 questions out of each sections, then number of ways of attempting these questions are
(1) 11300
(2) 11376
(3) 12576
(4) 13372

Sol.

A	B	C	\Rightarrow	No. of ways	
4	5	6	\rightarrow	${ }^{8} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{6}$	$=6 \times{ }^{8} \mathrm{C}_{4}$
4	6	5	$\rightarrow{ }^{8} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{6}{ }^{6} \mathrm{C}_{5}$	$=6 \times{ }^{8} \mathrm{C}_{4}$	
7	4	4	$\rightarrow{ }^{8} \mathrm{C}_{7}{ }^{6} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{4}$	$=8 \times(15)^{2}$	
6	5	4	\rightarrow	${ }^{8} \mathrm{C}_{6}{ }^{6} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{4}$	$=28 \times 6 \times 15$
6	4	5	\rightarrow	${ }^{8} \mathrm{C}_{6}{ }^{6} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{5}$	$=28 \times 15 \times 6$
5	5	5	$\rightarrow{ }^{8} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{5}$	$={ }^{8} \mathrm{C}_{5} \times 36$	
5	6	4	$\rightarrow{ }^{8} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{6}{ }^{6} \mathrm{C}_{4}$	$={ }^{8} \mathrm{C}_{5} \times 15$	
5	4	6	$\rightarrow{ }^{8} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{6}$	$={ }^{8} \mathrm{C}_{5} \times 15$	

$={ }^{8} \mathrm{C}_{5}[66]+28 \times 15 \times 12+8 \times 15^{2}+12 \times{ }^{8} \mathrm{C}_{4}$ $=11376$
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. If $f(x)=(x-2)^{2}(x-3)^{3}$ and $x \in[1,4]$. If M and m denotes maximum and minimum value respectively, then $M-m$ is

Answer (12)

Sol. $f^{\prime}(x)=2(x-2)(x-3)^{3}+3(x-2)^{2}(x-3)^{2}=0$
$(x-2)(x-3)^{2}[2(x-3)+3(x-2)]=0$
$(x-2)(x-3)^{2}[5 x-12]=0$
Now $f\left(\frac{12}{5}\right)=\frac{4}{25} \times\left(-\frac{27}{125}\right)$
$f(1)=-8($ minimum $)$
$f(4)=4$ (maximum)
$\therefore \quad M-m=12$
22. If $\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k} \quad|\vec{b}|^{2}=6$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$. If $\vec{a} \cdot \vec{b}=3$ then $\left(\alpha^{2}+\beta^{2}\right)|\vec{a} \times \vec{b}|^{2}$ is

Answer (18)

Sol. $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=3$

$$
\begin{aligned}
& =\sqrt{1+\alpha^{2}+\beta^{2}} \cdot \sqrt{6} \frac{1}{\sqrt{2}}=3 \\
& \Rightarrow 1+\alpha^{2}+\beta^{2}=3 \\
& \Rightarrow \alpha^{2}+\beta^{2}=2 \\
& \text { Also }|\vec{a}|=\sqrt{1+\alpha^{2}+\beta^{2}}=\sqrt{3} \\
& \Rightarrow \quad|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta \\
& \quad=\sqrt{3} \times \sqrt{6} \times \frac{1}{\sqrt{2}}=3 \Rightarrow|\vec{a} \times \vec{b}|^{2}=9 \\
& \Rightarrow \quad\left(\alpha^{2}+\beta^{2}\right)|\vec{a} \times \vec{b}|^{2}=2 \times 9=18
\end{aligned}
$$

23. If $(y-2)^{2}=(x-1)$ and $x-2 y+4=0$, then find the area bounded by the curves between the coordinate axis in first quadrant (in sq. unit).
Answer (05.00)
Sol. We have to find shaded area

$$
\begin{aligned}
& \left.\Rightarrow{ }_{0}^{2} \int\left[(y-2)^{2}+1\right] d y+\frac{3}{2}\right]\left[\left((y-2)^{2}+1\right)-\left(\frac{2 y-4}{2}\right)\right] d y \\
& =\frac{(y-2)^{3}}{3}+\left.y\right|_{0} ^{2}+\frac{(y-2)^{3}}{3}+y-\left.\left(\frac{y^{2}}{2}-2 y\right)\right|_{2} ^{3} \\
& =\left(2+\frac{8}{3}\right)+\left[\left(\frac{1}{3}+3\right)-\left(\frac{9}{2}-6\right)\right]-[2-(2-4)]=5
\end{aligned}
$$

24. If $3 \sin (A+B)=4 \sin (A-B)$ and

If $\tan A=k \tan B$, then value of k is \qquad
Answer (7)
Sol. $\frac{\sin (A+B)}{\sin (A-B)}=\frac{4}{3}$
$\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}=\frac{7}{1}$
[\because Using componendo and dividendo]
$\frac{2 \sin A \cos B}{2 \cos A \sin B}=7$
$\frac{\tan A}{\tan B}=7$
$k=7$
25. If $x\left(x^{2}+3|x|+5|x-1|+6|x-2|\right)=0$ then, find the number of solutions of the given equation.

Answer (1)

Sol. $x=0$ is the solution
(I) $x<0$
$\left(x^{2}-3 x-5(x-1)-6(x-2)\right)=0$
$x^{2}-14 x+17=0$
All the roots are greater than 0
(II) $0<x<1$
$x^{2}+3 x-5(x-1)-6(x-2)=0$
$x^{2}-8 x+17=0$
$D<0$
No solution in this interval
(III) $1<x<2$
$x^{2}+3 x+5(x-1)-6(x-2)=0$
$x^{2}+2 x+7=0$
$D<0$
No Solution
(IV) $x>2$
$x^{2}+3 x+5(x-1)+6(x-2)=0$
$x^{2}+14 x-17=0$
All the roots is less than 2
Hence, $x=0$ is the only solution.
26. A set $R=\{1,2,3,4\}$ is given then find the number of symmetric relation which are not reflexive relation.

Answer (960)

Sol. $R=\{1,2,3,4\}$
here number of elements $n=4$
Number of relations which are symmetric but not reflexive $=2^{\frac{n(n+1)}{2}}-2^{\frac{n^{2}-n}{2}}$

$$
\begin{aligned}
& =2^{\frac{4.5}{2}}-2^{6} \\
& =2^{10}-2^{6} \\
& =1024-64=960
\end{aligned}
$$

27. If $f(x)=a e^{2 x}+b e^{x}+c x, f(0)=-1, f(\ln 2)=4$, if $\int_{0}^{\ln 4}(f(x)-c x) d x=\frac{39}{2}$ find $|a+b+c|$

Answer (25)

Sol. $\because f(x)=a e^{2 x}+b e^{x}+c x$

$$
\Rightarrow f(x)=2 a e^{2 x}+b e^{x}+c
$$

$$
\because \quad f(\ln 2)=4
$$

$$
\Rightarrow 4=2 a(4)+b(2)+c
$$

$$
\begin{equation*}
\Rightarrow 8 a+2 b+c=4 \tag{i}
\end{equation*}
$$

$\because \quad \int_{0}^{\ln 4}\left(a e^{2 x}+b e^{x}\right) d x=\frac{39}{2}$
$\Rightarrow \frac{a}{2}\left[e^{2 x}\right]_{0}^{\ln 4}+b\left(e^{x}\right)_{0}^{\ln 4}=\frac{39}{2}$
$\Rightarrow \frac{a}{2}[16-1]+b(4-1)=\frac{39}{2}$

$$
\begin{align*}
& \Rightarrow \quad \frac{15 a}{2}+3 b=\frac{39}{2} \\
& \Rightarrow \frac{5 a}{2}+b=\frac{13}{2} \\
& \Rightarrow 5 a+2 b=13 \tag{ii}\\
& \text { Also } f(0)=-1 \\
& \Rightarrow-1=a+b \tag{iii}\\
& \text { From (ii) \& (iii) } \\
& 5 a+5 b=-5 \\
& 5 a+2 b=13 \\
& 3 b=-18 \\
& \Rightarrow b=-6 \\
& \Rightarrow a=5 \\
& \therefore c=-24 \\
& |a+b+c|=25
\end{align*}
$$

28.
29.
30.
