Vedantu

JEE-Main-30-01-2024 (Memory Based) [MORNING SHIFT]

Physics

Question: A particle of mass ' m ' has been thrown at an angle of 30° with horizontal at speed ' u '. Find its angular momentum at the highest point about the point of projection.

Options:

(a) $\frac{m u^{2}}{16 g}$
(b) $\frac{\sqrt{3} m u^{2}}{16 g}$
(c) $\frac{m u^{3}}{8 g}$
(d) $\frac{\sqrt{3} m u^{3}}{8 g}$

Answer: (b)
Question: The work function of metal surface is 3 eV . The maximum wavelength that should strike the metal for emitting Photoelectron (in nm) is

Options:

(a) 413
(b) 450
(c) 315
(d) 350

Answer: (a)
Question: If the length of a rod is doubled and area of cross section is halved, then its young's modulus will be

Options:

(a) Doubled
(b) Same
(c) Halved
(d) Four times

Answer: (b)

Question: The gravitational potential at certain height from the surface of earth is $-5.12 \times$ 10^{7} and gravity at that height is $6.4 \mathrm{~ms}^{2}$. Then that height from surface of earth is
Options:
(a) 80 km
(b) 8000 m
(c) 800 km
(d) 16000 m

Answer: (a)

Vedantu

Question: In a transformer if primary and secondary coil have 100 and 10 turns and primary voltage is 220 V . If the secondary coil has 2 resistors 7Ω and 15Ω as shown in the figure, find the potential difference across 7Ω resistance.

Options:

(a) 15 V
(b) 7 V
(c) 22 V
(d) 11 V

Answer: (b)

Question: The distance between an object and its twice magnified real image for a convex lens is 45 cm . Find the focal length of the lens

Options:

(a) 15 cm
(b) 10 cm
(c) 30 cm
(d) 60 cm

Answer: (b)

Question: If a block of mass ' M ' is released from the top of a frictionless slide, find the velocity when the block reaches to point ' B ' that 0.5 m below the starting point.
($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}$)

Options:

(a) 3.14
(b) 6.28
(c) 3.4
(d) 4.2

Answer: (a)

Question: Find the acceleration of 2 kg block. (Surface of inclined plane is smooth)

Options:

(a) g
(b) $g / 2$
(c) $g / 3$
(d) $g / 4$

Answer: (c)
Question: Find the temperature at which RMS speed of H_{2} will be same as that of RMS speed of Oxygen at $47^{\circ} \mathrm{C}$

Options:

(a) $20^{\circ} \mathrm{C}$
(b) $-253^{\circ} \mathrm{C}$
(c) $0^{\circ} \mathrm{C}$
(d) -253 K

Answer: (b)

Question: A disc of radius 2 m and mass 5 kg is rotating about its vertical axis at $10 \mathrm{rad} / \mathrm{sec}$. if another identical disc at rest is kept on top of it coaxially, then find the energy dissipated by the time slipping stops

Options:

(a) 500 J
(b) 1000 J
(c) 250 J
(d) 100 J

Answer: (c)

Question: Two identical insulated coil carrying same current I (same radius a) \& placed such that their centers are coinciding with each other, but planes of coil are perpendicular to each other. Find net magnetic induction at the center due this arrangement.

Options:

(a) $\frac{\sqrt{2} \mu_{0} I}{4 a}$
(b) $\frac{\mu_{0} I}{\sqrt{2} a}$
(c) $\frac{\sqrt{2} \mu_{0} I}{a}$
(d) $\frac{\sqrt{3} \mu_{0} I}{2 a}$

Answer: (b)

Question: If electric field component of an EM wave is $\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}$ then the magnetic component will

Options:

(a) $\vec{B}=E_{0} C \cos (\omega t-k z) \hat{j}$
(b) $\vec{B}=\left(\frac{E_{0}}{C}\right) \cos (\omega t-k z) \hat{j}$
(c) $\vec{B}=\left(E_{0} C\right) \cos (\omega t-k z)(-\hat{j})$
(d) $\vec{B}=\left(\frac{E_{0}}{C}\right) \cos (\omega t-k z)(-\hat{j})$

Answer: (b)

Question: In a closed organ pipe, fundamental frequency f is 50 Hertz. Now same water is filled and frequency becomes 110 Hz . if the cross sectional area of the pipe is $2 \mathrm{~cm}^{2}$, then find the amount of water added in grams. Speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$.

Options:

(a) 90 grams
(b) 180 grams
(c) 300 grams
(d) 18 grams

Answer: (b)
Question: For uniform accelerated motion a body travels 125 m from t to $\mathrm{t}+1 \mathrm{~s}$ while increasing speed by $50 \mathrm{~m} / \mathrm{s}$, then the displacement in the next second from $\mathrm{t}+1$ to $\mathrm{t}+2$ is?

Options:

(a) 175 m
(b) 165 m
(c) 186 m
(d) 195 m

Answer: (a)
Question: Dimensions of viscosity coefficient, surface tension, angular momentum, rotational energy?

Options:

(a) $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}$
(b) MT^{-2}
(c) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
(d) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

Answer: (a)
Question: Electrostatic potential due to a short dipole is proportional to Options:
(a) r
(b) $1 / \mathrm{r}$
(c) $1 / r^{2}$
(d) $1 / r^{3}$

Answer: (c)

Vedantu

Question: Breakdown voltage of zener diode is 10 V then the current through it is?

Options:

(a) 1 mA
(b) 2 mA
(c) 3 mA
(d) 4 mA

Answer: (a)
Question: If the power factor of LR circuit having voltage $\mathrm{E}=25 \sin (1000 \mathrm{t})$ is $1 / \sqrt{ } 2$ then the power factor of $\mathrm{E}=20 \sin (2000 \mathrm{t})$ is?

Options:

(a) $1 / \sqrt{ } 5$
(b) $1 / \sqrt{ } 3$
(c) $1 / 2$
(d) $1 / \sqrt{ } 7$

Answer: (a)

Question: A ball of 100 g is dropped from a height of 10 m and after collision with ground rises to 5 m . Find the impulse by the ground surface ?

Options:

(a) 0.09 Ns
(b) 0.28 Ns
(c) 0.38 Ns
(d) 0.29 Ns

Answer: (d)

Question: A wire carrying $\sqrt{ } 2 \mathrm{~A}$ current is placed in the plane of magnetic field of $3.5 \times 10-5$
T making 450 . Find the force per unit length on it ?
Options:
(a) $34 \times 10^{-6} \mathrm{~N} / \mathrm{m}$
(b) $34 \times 10^{-5} \mathrm{~N} / \mathrm{m}$
(c) $35 \times 10^{-6} \mathrm{~N} / \mathrm{m}$
(d) $35 \times 10^{-5} \mathrm{~N} / \mathrm{m}$

Answer: (c)
Question:

Voltage drop across $\varepsilon 2$?
Options:
(a) 6 V
(b) 5 V
(c) 4 V
(d) 7 V

Answer: (a)

