CollegeDekho

JEE Main 30 January 2024 Shift 2 Answer Key Physics

Q.1: What work is done by the friction force when 1 kg of block is placed on the inclined surface. 10 N force is applied to the block in the upward direction and the displacement is 10 meters (mu $=0.1$)
A.1: 5J
Q.2: Determine the ratio of their initial velocities when two balls are launched from a height of 400 m at angles of 60° and 45° with the horizontal, respectively, while maintaining equal ranges and times of flight.
A.2: $\sqrt{\frac{2}{3}}$
Q.3: 1000 drops of surface energy E_{1} coalesce to form 1 bigger drop of surface energy E_{2}. Calculate the value of $\mathrm{E}_{2} / \mathrm{E}_{1} \times 10^{3}$
Q.4: Calculate the $\mathrm{V}_{\text {escape }}$ when R_{p} (Radius of Plant) $=1 / 3 \mathrm{R}_{\mathrm{E}}$ and Mp (Mass of the planet) $=1 / 6$ Me_{E} (Take the escape velocity of the earth as $11.2 \mathrm{~km} / \mathrm{hr}$)
A.4: $8 \mathrm{Km} / \mathrm{hr}$
Q.5: Determine the magnetic field at the center of a square frame with a side length of 1 meter when a current of 5 amperes is flowing through it.
A.5: $\sqrt{2} \times 10^{-6}$
Q.6: A 1000 -ohm resistor and a 200 -ohm resistor are connected in series with a 4 V battery. The voltmeter across the 100 -ohm resistor reads 1 V . Calculate the internal resistance of the voltmeter.

CollegeDekho

A.6: 200 Ohms

Q.7: A graph is drawn between the maximum kinetic energy of the electron and the incident frequency of the photon. The slope of this graph represents:
A.7: $y=m x+c$
Q.8: Calculate the time it takes for an electron to complete one full revolution in a circular orbit with a radius ' r ' around an infinitely long uniformly charged wire, where the linear charge density is 'lambda'.
A. $8: \frac{2 \pi}{w}=2 \pi \sqrt{\frac{m R^{2}}{2 e k l a m b d a}}$
Q.9: What is the change in kinetic energy of the system? If a disc of the moment of inertia $4 \mathrm{kgm}^{2}$ is spinning freely at $10 \mathrm{rad} / \mathrm{s}$. A second disc of the moment of inertia $2 \mathrm{kgm}^{2}$ and angular speed 4 $\mathrm{rad} / \mathrm{s}$ slides down the spindle of the first disc and they spin together.
A.9: 24 J
Q.10: A nucleus of mass M decays into three daughter nuclei of equal mass. Then velocity of each daughter nuclei is:
A.10: 4
Q.11: An electron is revolving in n orbital of $\mathrm{He}+\mathrm{ion}$. Its magnetic moment depends on the radius of the orbital as:
A.11: m is proportional to n

