JEE Main 30 January 2024 Shift 1 Question Paper

Chemistry

1. Find out the sum of the coefficients of all the species involved in the balanced equation: $2 \mathrm{MnO} 4+\mathrm{I}^{-} \rightarrow($ in the presence of a slightly alkaline medium $) \rightarrow$ Product
2. Find out the maximum number of hybrid orbitals formed when 2 s and 2 p orbitals are mixed.
3. Find out the work done in Joules for the cyclic process ABCA such that $\mathrm{P}_{\mathrm{A}}=30 \mathrm{kPa}, \mathrm{V}_{\mathrm{A}}=$ $10 \mathrm{dm}^{3}, \mathrm{P}_{\mathrm{B}}=10 \mathrm{kPa}, \mathrm{V}_{\mathrm{B}}=30 \mathrm{dm}^{3}, \mathrm{P}_{\mathrm{C}}=10 \mathrm{kPa}, \mathrm{V}_{\mathrm{C}}=10 \mathrm{dm}^{3}$ (as per the given graph).
4. Identify the given reaction.
$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}=\mathrm{O}-\mathrm{Cl} \rightarrow\left(\right.$ in the presence of $\left.\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}\right) \rightarrow$ Product
i. Etard Reaction
ii. Stephen's Reaction
iii. Wolff Kishner Reduction
iv. Rosenmund Reaction
5. Which of the given compounds will not give the Fehling test?
i. Lactose
ii. Maltose

6. Which of the following sets contain both diamagnetic ions?
i. $\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$
ii. $\mathrm{Eu}^{3+}, \mathrm{Gd}^{3+}$
iii. $\mathrm{Cu}^{+}, \mathrm{Zn}^{2+}$
iv. $\mathrm{Ce}^{4+}, \mathrm{Pm}^{3+}$
7. Identify the halogen which has allylic halogen. (A diagrammatic representation of compounds was given).
8. Find the final product when $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Br}$ reacts with i. Mg , Dry Ether, ii. $\mathrm{CO}_{2}, \mathrm{H}^{+}$, iii. NH_{3}, heat, and iv. $\mathrm{Br}_{2}, \mathrm{KOH}$
9. Identify the correct structure for the compound named "3-Methylpent-2-enal" as per IUPAC nomenclature.
10. Identify the most stable compound/ion among the given options.
11. Statement I: For hydrogen atoms, 3p and 3d are degenerate.

Statement II: Degenerate orbitals have the same energy.
i. Both statements I and II are correct.
ii. Both statements I and II are incorrect.
iii. Statement I is correct and statement II is incorrect.
iv. Statement I is incorrect and statement Il is correct.
12. What is the geometry of Aluminium chloride in an aqueous solution?
i. Square planar
ii. Octahedral
iii. Tetrahedral
iv. Square pyramidal
13. The number of atoms in a silver plate having an area of $0.05 \mathrm{~cm}^{2}$ and a thickness of 0.05 cm is $m \times 10^{19}$. If the density of silver is $7.9 \mathrm{~g} / \mathrm{cm}^{3}$, find the value of m.
14. What is the group number of unununnium?
15. Match the following:

Column I: i. BrF5, ii. H2O, iii. CIF3, iv. SF4
Column II: a. Sea-Saw, b. T-Shape, c. Bent, d. Square Pyramidal
16. If a 250 mL solution of $\mathrm{CH}_{3} \mathrm{COONa}$ of molarity 0.35 M is to be prepared, what is the mass
\square of $\mathrm{CH}_{3} \mathrm{COONa}$ required in grams? Round off the answer to the nearest integer.
17. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1×10^{-12}. Find the limiting pH at $25^{\circ} \mathrm{C}$ at which $0.01 \mathrm{M} \mathrm{Mg}^{2+}$ ions will precipitate.
18. Assertion (A): From N to P covalent radius increases significantly, but from As to Bi , only a small increase is observed.

Reason (R): For a particular oxidation state, covalent radii and ionic radii increase down the group.
i. Both (A) and (R) are correct and (R) is the correct explanation of (A).
ii. Both (A) and (R) are correct but (R) is not the correct explanation of (A).
iii. (A) is correct but (R) is incorrect.
iv. (A) is incorrect but (R) is correct.
19. Find A and B if:
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \rightarrow($ reacts with Na$) \rightarrow$ Product $\mathrm{A} \rightarrow$ (reacts with B$) \rightarrow \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{3}$
20. Find A and B if:
$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{NH}_{2} \rightarrow($ reacts with A$) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{N}_{2}{ }^{+} \rightarrow($ reacts with B) \rightarrow Orange-Red Precipitate
21. Match the following:

Column I: i. Mn^{2+}, ii. V^{+}, iii. Cr^{+}, iv. Fe^{2+}
Column II: a. $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$, b. $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$, c. $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$, d. $3 \mathrm{~d}^{4} \mathrm{~s}^{1}$
22. What happens to the freezing point of benzene, when a small amount of naphthalene is added to benzene?
23. A mixture is heated with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the lead acetate paper turns black by the evolved gas. The mixture contains:
i. Sulphite
ii. Sulphide
iii. Sulphate
iv. Thiosulphate
24. $A \rightarrow P$

In a first-order reaction, the concentration of reactant A is 0.04 M at 10 mins and 0.03 M at 20 mins. Calculate the half-life of the first-order reaction in mins. $[\log 2=0.3, \log 3=$

