

# CHEMISTRY

## **SECTION - A**

**Multiple Choice Questions:** This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

#### Choose the correct answer :

1. Find out final product (C).

 $CH_{3} - CH_{2} - CH_{2} - Br \xrightarrow{Alcoholic} (A) \xrightarrow{HBr} (B)$   $(C) \xleftarrow{Aq. KOH}$ 

- (1) Propan-1-ol
- (2) Propan-2-ol
- (3) Propene
- (4) Propane

## Answer (2)

$$CH_{3} - CH_{2} - CH_{2} \xrightarrow{\text{Alcoholic}} CH_{3} - CH = CH_{2}$$
Br
$$HBr$$

$$HBr$$

$$KOH (Aq.)$$

$$CH_{3} - CH - CH_{3} \xleftarrow{KOH (Aq.)} CH_{3} - CH - CH_{3}$$

$$I$$

$$OH$$

$$Br$$

$$(C)$$
Propan-2-ol

- 2. Which of the following option contain amphoteric oxide(s) only?
  - (1) SnO<sub>2</sub> and SiO
  - (2) SiO<sub>2</sub>
  - (3) SnO<sub>2</sub> and PbO<sub>2</sub>
  - (4) CO and SiO

## Answer (3)

Sol. SnO<sub>2</sub> and PbO<sub>2</sub> are amphoteric oxide.

SiO is weakly acidic oxide.

SiO<sub>2</sub> is acidic oxide.

CO is neutral oxide.

3. Consider the following reaction, the expression for  $$K_{\rm c}$$  is :

$$\begin{bmatrix} \operatorname{Fe}(\operatorname{SCN}) \\ (\operatorname{aq.}) \end{bmatrix}^{2^{+}} \longleftrightarrow \operatorname{Fe}^{3^{+}} + \operatorname{SCN}^{-} \\ (1) \quad \operatorname{K}_{c} = \frac{\left[\operatorname{Fe}^{3^{+}}\right] \left[\operatorname{SCN}^{-}\right]}{\left[\left[\operatorname{Fe}(\operatorname{SCN})\right]^{2^{+}}\right]} \\ (2) \quad \operatorname{K}_{c} = \frac{\left[\operatorname{Fe}^{3^{+}}\right]^{2} \left[\operatorname{SCN}^{-}\right]}{\left[\left[\operatorname{Fe}(\operatorname{SCN})\right]^{2^{+}}\right]} \\ (3) \quad \operatorname{K}_{c} = \frac{\left[\operatorname{Fe}^{3^{+}}\right]^{2} \left[\operatorname{SCN}^{-}\right]^{2}}{\left[\left[\operatorname{Fe}(\operatorname{SCN})\right]^{2^{+}}\right]} \\ (4) \quad \operatorname{K}_{c} = \frac{\left[\operatorname{Fe}^{3^{+}}\right]^{3} \left[\operatorname{SCN}^{-}\right]}{\left[\left[\operatorname{Fe}(\operatorname{SCN})\right]^{2^{+}}\right]} \\ \end{bmatrix}$$

Answer (1)

**Sol.** Kc = 
$$\frac{\text{Product ion conc.}}{\text{Reactant ion conc.}} = \frac{\left[\text{Fe}^{3^+}\right]\left[\text{SCN}^-\right]}{\left[\left[\text{Fe}(\text{SCN})\right]^{2^+}\right]}$$

Hence, option (1) is correct

- 4. On which factor, electrical conductivity of electrolytic cell doesn't depend
  - (1) Concentration of electrolyte
  - (2) Nature of electrolyte added
  - (3) Temperature
  - (4) Nature of electrode

## Answer (4)

- **Sol.** Conductivity of electrolytic cell is affected by Conc. of electrolyte, nature of electrolyte and temperature
- Decreasing order of electron gain enthalpy of the following elements (magnitude only).
  - Sulphur $\rightarrow$ ABromine $\rightarrow$ BFluorine $\rightarrow$ CArgon $\rightarrow$ D



| (1) A > B > C > D | (2) $D > C > B > A$ |
|-------------------|---------------------|
| (3) C > B > A > D | (4) A > B > D > C   |

#### Answer (3)

- Sol. Electron gain enthalpy values in kJ/mol
  - S = -200
  - Br = -325
  - F = -333
  - Ar = 96

The correct answer is C > B > A > D

(Magnitude only) 333 > 325 > 200 > 96

- 6. Species having carbon with sextet of valence electrons and acts as an electrophile is called
  - (1) Carbanion (2) Carbocation
  - (3) Free radical (4) Nitrene

#### Answer (2)

Sol.  $R_3 \stackrel{R_1}{\xrightarrow{\oplus}} R_2$ 

Carbon has 6 electrons in valence shell.

7. The compound which is white in colour is

| (1) | ZnSO4 | (2)     | CuSO <sub>4</sub> |
|-----|-------|---------|-------------------|
| • • |       | · · · · |                   |

(3)  $FeSO_4$  (4)  $FeCl_3$ 

#### Answer (1)

**Sol.** Zn<sup>2+</sup> : 4*s*<sup>0</sup> 3*d*<sup>10</sup> (Colourless)

8. Find the rate constant for first order gaseous reaction.

$$A(g) \longrightarrow B(g) + C(g)$$

(1) 
$$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$$

(2) 
$$k = \frac{2.303}{t} \log \frac{2p_i}{p_i - p_t}$$

(3) 
$$k = \frac{2.303}{t} \log \frac{p_i - p_t}{2p_i}$$

(4) 
$$k = \frac{2.303}{t} \log \frac{2p_t}{2p_i - p_t}$$

Answer (1)

| Sol. |          | A(g)                     | $\longrightarrow$ | B(g)  | + | C(g)  |
|------|----------|--------------------------|-------------------|-------|---|-------|
| A    | At t = 0 | p <sub>i</sub> atm       |                   | 0 atm |   | 0 atm |
| A    | At t = t | (p <sub>i</sub> – x) atm | ı                 | x atm |   | x atm |
|      |          |                          |                   |       |   |       |

where pi is initial pressure

$$p_t = p_i - x + x + x$$

$$p_t = p_i + x$$

$$x = p_t - p_i$$

$$k = \frac{2.303}{t} \log \frac{p_i}{p_i - x}$$

$$k = \frac{2.303}{t} \log \frac{p_i}{p_i - (p_t - p_i)}$$

$$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$$

9. **Assertion :** pK<sub>a</sub> value of phenol is 10.0 while that of ethanol is 15.9

Reason : Ethanol is stronger acid than phenol

- (1) Both assertion and reason are correct and reason is the correct explanation for assertion
- (2) Assertion is correct and reason is incorrect
- (3) Both assertion and reason are correct but reason is not correct explanation for assertion
- (4) Both assertion and reason are incorrect

## Answer (2)

- **Sol.** Since pK<sub>a</sub> of phenol is less than ethanol, phenol is the stronger acid.
- 10. Which of the following solution shows positive deviation from Raoult's law?
  - (1) CHCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub>
  - (2) CH<sub>3</sub>COCH<sub>3</sub> + CS<sub>2</sub>
  - (3) CH<sub>3</sub>COCH<sub>3</sub> + CHCl<sub>3</sub>
  - (4) CH<sub>3</sub>COCH<sub>3</sub> + C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>

#### Answer (2)

**Sol.** Acetone and CS<sub>2</sub> is an example of solutions showing positive deviation from Raoult's law. Since acetone – CS<sub>2</sub> attractions are weaker than acetone-acetone attractions.

#### JEE (Main)-2024 : Phase-1 (31-01-2024)-Morning

11. **Assertion (A):** Noble gases have very high boiling point.

**Reason (R):** Noble gases have strong dispersion forces hence they liquify at low temperature, hence they have high boiling point.

- (1) (A) and (R) are true and (R) explains (A)
- (2) (A) and (R) are true and (R) does not explain (A)
- (3) (A) and (R) are false
- (4) (A) is true but (R) is false

#### Answer (3)

**Sol.** Noble gases have very low boiling point due to weak van der Waals forces of attraction. Noble gases do not have interatomic forces other than weak dispersion forces.

Therefore, both (A) and (R) are false.

12. Statement-I: IUPAC name of compound

$$HO - CH_2 - (CH_2)_3 - CH_2 - CH_3 = CH_3$$

7-hydroxyheptan-2-one.

**Statement-II:** In IUPAC name –OH is taken as main functional group.

- (1) Both statements I and II are correct
- (2) Both statements I and II are incorrect
- (3) Statement-I is correct, statement-II is incorrect
- (4) Statement-I is incorrect, statement-II is correct

#### Answer (3)

**Sol.** 
$$HO = CH_2 - CH_3$$
  
7-Hydroxyheptan-2-one

- 13. Adsorption principle is used in
  - (1) Distillation
  - (2) Differential extraction
  - (3) Chromatography
  - (4) Vacuum distillation

#### Answer (3)

- **Sol.** Adsorption principle is used in chromatography in which different compounds are adsorbed on an adsorbent to different degrees.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19. 20.

# SECTION - B

**Numerical Value Type Questions:** This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. How many of the following compounds have sp<sup>3</sup> hybridized central atom?

H<sub>2</sub>O, NH<sub>3</sub>, SiO<sub>2</sub>, SO<sub>2</sub>, CO, BF<sub>3</sub>

# Answer (3)

**Sol.** H<sub>2</sub>O, NH<sub>3</sub>, SiO<sub>2</sub> have *sp*<sup>3</sup> hybridized central atom.

Structure of SiO<sub>2</sub> is

22. The spin only magnetic moment of complex ion  $[Ni(NH_3)_6]^{2+} \text{ is } x \times 10^{-1} \text{ BM}$ 

The value of x is \_\_\_\_\_ (Nearest integer)

#### Answer (28)

Sol. NH<sub>3</sub> acts as WFL with Ni<sup>+2</sup> and hybridisation of complex [Ni(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup> is sp<sup>3</sup>d<sup>2</sup>

Ni<sup>+2</sup> = 3d<sup>8</sup>





$$\label{eq:matrix} \begin{split} \mu = \ \sqrt{n(n+2)} = \sqrt{2(4)} = \sqrt{8} \\ &= 2.82 \\ &= 28.2 \times 10^{-1} \, \text{BM} \ \Rightarrow \ x = 28 \end{split}$$

If one Faraday of electricity is used in the discharging of Cu<sup>2+</sup>, then find the mass (in g) of Cu deposited (Nearest integer)

# Answer (32)

**Sol.**  $Cu^{2+} + 2e^{-} \rightarrow Cu$ 

Since one mol Cu is deposited by 2 mol or say 2 Faraday charge hence the mol of Cu deposited will be 0.5 mol

Mass of Cu deposited =  $63.5 \text{ g mol}^{-1} \times 0.5 \text{ mol}$ 

 The total number of different alkanes formed when the following mixture is subjected to electrolysis: CH<sub>3</sub>COONa(aq.) and C<sub>2</sub>H<sub>5</sub>COONa(aq.) (do not consider disproportionation reaction).

#### Answer (03.00)

- Sol. Ethane, butane and propane are formed when  $CH_3COONa$  and  $C_2H_5COONa$  undergo electrolysis.
- 25. Moles of CH<sub>4</sub> required for formation of 22 gm of CO<sub>2</sub> is  $m \times 10^{-2}$ .

The value of m is

## Answer (50)

- Sol.  $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ 22 gm 0.5 mole = 0.5 mole
  - m × 10<sup>-2</sup> = 0.5

26. How many of the following compounds have *sp*<sup>3</sup> hybridized central atom?

BF<sub>3</sub>, BeCl<sub>2</sub>, NH<sub>3</sub>, CH<sub>4</sub>, H<sub>2</sub>O, SO<sub>2</sub>, CO<sub>2</sub>

## Answer (3)

**Sol.** NH<sub>3</sub>, CH<sub>4</sub>, H<sub>2</sub>O have *sp*<sup>3</sup> hybridized central atoms.

#### JEE (Main)-2024 : Phase-1 (31-01-2024)-Morning

- 27. How many of the following can be used as electrode in batteries?
  - (i) Zinc
  - (ii) Zinc-Mercury amalgam
  - (iii) Lead
  - (iv) Graphite

# Answer (4)

- **Sol.** All 4 given species can be used as electrode in batteries.
- 28. If the energy of radiation having wavelength of 242 nm is  $x \times 10^{-19}$ J, then find nearest integer value of x.

Given : Plank's constant =  $6.6 \times 10^{-34}$  Joule-Second, C =  $3 \times 10^8$  ms<sup>-1</sup>

## Answer (8)

Sol. 
$$E = \frac{hC}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{242 \times 10^{-9}}$$
 Joule  
=  $\frac{19.8 \times 10^{-26}}{242 \times 10^{-9}}$   
=  $8.2 \times 10^{-19}$  Joule  
 $\approx 8 \times 10^{-19}$  Joule

- 29. How many of the following statements are true?
  - (i) Chromate ion is square planar.
  - (ii) Green manganate ion is diamagnetic.
  - (iii) Dichromate can be prepared using chromate.
  - (iv) Dark green KMnO<sub>4</sub> disproportionate in acidic medium and neutral medium.
  - (v) For *d*-block elements, ionic character decreases for increasing oxidation no. of metal in oxides.

## Answer (02)

Sol. (iii) and (v) are correct.

The green manganate ion is paramagnetic with one unpaired  $e^-$  but the permanganate is diamagnetic

 $Na_2CrO_4 + H^+ \rightarrow Na_2Cr_2O_7 + Na^+ + H_2O$ 

(Ref : NCERT)

30.