PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The logical circuit shown below is equivalent to

(1) NAND
(2) NOR
(3) AND
(4) OR

Answer (4)

Sol. Output, $Y=\overline{\bar{A}} \cdot \bar{B}=A+B$
2. The block M of mass 10 kg is having acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$ in the direction shown. Find mass (m) of the other block.

(1) 2.5 kg
(2) 7.5 kg
(3) 12.5 kg
(4) 5 kg

Answer (3)

Sol. $a=\frac{(M \sin 53-m \sin 37) g}{(M+m)}$
$m=\frac{15}{2} \mathrm{~kg}$
3. If the percentage error in measuring length and diameter of a wire is 0.1% each, then the percentage error of the resistance of the wire is
(1) 0.3%
(2) 0.2%
(3) 0.1%
(4) 0.4%

Answer (1)
Sol. $R=\frac{\rho /}{A}$
$R=\frac{4 \rho l}{\pi d^{2}}$

$$
\begin{aligned}
\frac{\Delta R}{R} & =\frac{\Delta l}{l}+2 \frac{\Delta d}{d} \\
& =0.3 \%
\end{aligned}
$$

4. 4 identical particles of mass m each are placed at 4 corners of a square. The gravitational force exerted on one of the mass by other masses is $\left[\frac{2 \sqrt{2}+1}{32}\right] \frac{G m^{2}}{l^{2}}$. The distance of side of square is :
(1) 21
(2) 41
(3) $\frac{1}{2}$
(4) $/$

Answer (2)
Sol.

$\Rightarrow F_{\text {Net }}=\frac{G m^{2}}{a^{2}}\left[\frac{1}{2}+\sqrt{2}\right]$

$$
=\frac{2 \sqrt{2}+1}{2} \frac{G m^{2}}{a^{2}}
$$

$\Rightarrow 2 a^{2}=32 R$
$\Rightarrow a=41$
5. $\quad T-V$ graph is given for two different pressures $P_{1} \&$
P. Then

(1) $P_{2}>P_{1}$
(2) $P_{1}=P_{2}$
(3) $P_{2}<P_{1}$
(4) $P_{2} \leq P_{1}$

Answer (1)

Sol. T - V graph: Straight line
\Rightarrow Isobaric
Also, slope $\propto P$
$\Rightarrow P_{2}>P_{1}$
6. For a $1-D$ motion, relation between position x and time t is $t=\alpha x^{2}+\beta x$. Find the relation between velocity v and acceleration a.
(1) $a=\alpha v$
(2) $a=-2 \alpha v$
(3) $a=-2 \alpha v^{3}$
(4) $a=2 \alpha v^{2}$

Answer (3)

Sol. $t=\alpha x^{2}+\beta x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d t}{d x}=2 \alpha x+\beta=\frac{1}{v} \\
& \Rightarrow \quad v=\frac{1}{2 \alpha x+\beta}
\end{aligned}
$$

Also, $a=\frac{v d v}{d x}=\frac{-1}{2 \alpha x+\beta}\left[\frac{1}{2 \alpha x+\beta}\right]^{2} .2 \alpha$

$$
\begin{aligned}
\Rightarrow \quad a & =\frac{-2 \alpha}{(2 \alpha x+\beta)^{3}} \\
& =-2 \alpha v^{3} \\
\Rightarrow \quad a & =-2 \alpha v^{3}
\end{aligned}
$$

7. Two resistances having coefficient of variation of resistivity α_{1} and α_{2} are having equal resistance. Equivalent temperature coefficient of resistivity in series and parallel carburation are.
(1) $\frac{\alpha_{1}+\alpha_{2}}{2}, \alpha_{1}+\alpha_{2}$
(2) $\alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}$
(3) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$
(4) $\frac{\alpha_{1}+\alpha_{2}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$

Answer (4)

Sol. $R_{1}=R_{0}\left(1+\alpha_{1} T\right)$
$R_{2}=R_{0}\left(1+\alpha_{2} T\right)$
$\alpha_{s}=\frac{R_{0}\left(1+\alpha_{1} T\right)+R_{0}\left(1+\alpha_{2} T\right)-2 R_{0}}{2 R_{0} T}$
$\alpha_{s}=\frac{\alpha_{1}+\alpha_{2}}{2}$
$\alpha_{\| \mid}=\frac{\frac{R_{0}\left(1+\alpha_{1} T\right)+R_{0}\left(1+\alpha_{2} T\right)}{R_{0}\left(1+\alpha_{1} T\right)+R_{0}\left(1+\alpha_{2} T\right)}-\frac{R_{0}}{2}}{\frac{R_{0}}{2} T}$
$\alpha_{\|}=\frac{\left(\alpha_{1}+\alpha_{2}\right)}{2} \frac{T}{T}=\frac{\alpha_{1}+\alpha_{2}}{2}$
8. An artillery of mass M_{1}, fires a shell of mass M_{2}. At the time of firing the ratio of kinetic energy is
(1) $\frac{M_{2}}{M_{1}}$
(2) $\frac{M_{1}+M_{2}}{M_{1}}$
(3) $\frac{M_{1}+M_{2}}{M_{2}}$
(4) $\frac{M_{1}}{M_{1}+M_{2}}$

Answer (1)

Sol. By conservation of momentum

$$
\begin{aligned}
& P_{1}=-P_{2} \\
& \frac{K_{1}}{K_{2}}=\frac{P_{1}^{2}}{2 M_{1}} \times \frac{2 M_{2}}{P_{2}^{2}}=\frac{M_{2}}{M_{1}}
\end{aligned}
$$

9. The fundamental frequency of closed organ pipe is equal to the frequency of first overtone of open organ pipe of length 60 cm . The length of closed organ pipe is
(1) 45 cm
(2) 30 cm
(3) 15 cm
(4) 60 cm

Answer (3)

Sol. $\frac{V}{4 L_{1}}=2\left(\frac{V}{2 L_{2}}\right)$
$L_{1}=$ Length of closed organ pipe
$L_{2}=$ Length of open organ pipe
$L_{2}=4 L_{1}$
$L_{1}=\frac{L_{2}}{4}=15 \mathrm{~cm}$
10. When a small spherical ball is dropped into a long cylindrical pipe filled with glycerine, then what will be the v versus t graph?
(1)

(2)

(3)

(4)

Answer (3)

Sol. $F=m g-B-6 \pi \eta r v$
Where B : Buoyancy

$$
\begin{aligned}
& \Rightarrow m \frac{d v}{d t}=\underbrace{(m g-B)}_{\text {constant }}-\underbrace{(6 \pi \eta r) v}_{\text {constant }} \\
& \Rightarrow v=v_{0}\left[1-e^{-c t}\right], c: \text { constant }
\end{aligned}
$$

11. Force F depends on distance (x) and time (t) as $F=a x^{2}+b t^{\frac{1}{2}}$, find dimension of $\frac{b^{2}}{a}$
(1) $M^{1} L^{2} T^{-3}$
(2) $M^{1} L^{-3} T^{3}$
(3) $M^{1} L^{3} T^{-3}$
(4) $M^{2} L^{2} T^{1}$

Answer (3)

Sol. From dimensional analysis
$[a]=\frac{[F]}{\left[L^{2}\right]}=\frac{M L T^{-2}}{L^{2}}=\left[M L^{-1} T^{-2}\right]$
$[b]=\frac{[F]}{\left[T^{\frac{1}{2}}\right]}=\frac{M L T^{-2}}{T^{\frac{1}{2}}}=M L T^{\frac{-5}{2}}$
Then dimension of $\frac{b^{2}}{a}=\frac{M^{2} L^{2} T^{-5}}{M L^{-1} T^{-2}}$
$\left[\frac{b^{2}}{a}\right]=\left[M L^{3} T^{-3}\right]$
12. Two charges q \& $3 q$ are placed at a distance r from each other. Find the distance from q where electric field is zero.
(1) $\frac{r}{\sqrt{3}+1}$
(2) $\frac{r}{2}$
(3) $\frac{r}{\sqrt{3}-1}$
(4) $\frac{2 r}{3}$

Answer (1)

Sol. $\frac{k q}{x^{2}}=\frac{k 3 q}{(r-x)^{2}}$
$x=\frac{r-x}{\sqrt{3}}$
$x=\frac{r}{(\sqrt{3}+1)}$
13. The refractive index of thin prism of an apex angle A is $\cot \left(\frac{A}{2}\right)$. Then the minimum angle of deviation is:
(1) $180^{\circ}-3 A$
(2) $180^{\circ}-2 A$
(3) $180^{\circ}-A$
(4) $180^{\circ}-4 A$

Answer (2)
Sol. $\delta_{\min }=2 \sin ^{-1}\left[\mu \sin \frac{A}{2}\right]-A$

$$
\begin{aligned}
& =2 \sin ^{-1}\left[\cos \frac{A}{2}\right]-A \\
& =\pi-2 A
\end{aligned}
$$

14. In single electron atom/ion, first member of Lyman series is λ, then wavelength of second member of this series shall be
(1) $\frac{5}{27} \lambda$
(2) $\frac{5}{32} \lambda$
(3) $\frac{27}{32} \lambda$
(4) $\frac{15}{23} \lambda$

Answer (3)

Sol. $\frac{1}{\lambda}=c\left\{1-\frac{1}{4}\right\}$ for $2 \rightarrow 1$
$\frac{1}{\lambda^{\prime}}=c\left(1-\frac{1}{9}\right)$ for $3 \rightarrow 1$
$\frac{\lambda^{\prime}}{\lambda}=\frac{3}{4} \times \frac{9}{8}=\frac{27}{32}$
15. When light of wavelength λ is incident on a metal, the stopping potential is 8 V . If the wavelength is made 3λ the stopping potential becomes 2 V . Find the threshold wavelength for the photoelectric effect.
(1) $2.6 \times 10^{-6} \mathrm{~m}$
(2) $2.8 \times 10^{-7} \mathrm{~m}$
(3) $1.24 \times 10^{-6} \mathrm{~m}$
(4) $1.24 \times 10^{-7} \mathrm{~m}$

Answer (3)

Sol. $(8 e)=\frac{h c}{\lambda}-\phi_{0}$
(2e) $\frac{h c}{3 \lambda}-\phi_{0}$

$$
\begin{aligned}
& \phi_{0}=1 \mathrm{eV} \\
& \therefore \quad \lambda_{\text {th }}=12400 \AA \\
& \\
& \lambda_{\text {th }}=1.24 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

16. In YDSE, intensity at two sources are in ratio of $1: 9$. If sources are coherent, then intensity at central point is h_{1} and if sources are coherent (and phase differs by 60°), then intensity at central point is l_{2}, then $\frac{l_{1}}{l_{2}}$ is
(1) $\frac{10}{13}$
(2) $\frac{5}{13}$
(3) $\frac{8}{13}$
(4) $\frac{7}{11}$

Answer (1)

Sol. $\mu_{1}=1+9=10$
$I_{2}=1+9+2 \sqrt{9} \cos 60^{\circ}=13$
$\frac{I_{1}}{I_{3}}=\frac{10}{13}$
17. Calculate the average energy density of an electromagnetic wave whose electric field is oscillating with amplitude $50 \mathrm{v} / \mathrm{m}$ and frequency $5 \times 10^{10} \mathrm{~Hz}$.
(1) $2 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
(2) $1.1 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$
(3) $3 \times 10^{-7} \mathrm{~J} / \mathrm{m}^{3}$
(4) $1.6 \times 10^{-7} \mathrm{~J} / \mathrm{m}^{3}$

Answer (2)

Sol. Average energy density $=\frac{1}{2} \in_{0} E_{0}^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 8.85 \times 10^{-12} \times 2500 \\
& =1.106 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}
\end{aligned}
$$

18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. A ball dropped from height H rebounds upto height h after colliding with horizontal surface. If coefficient of restitution for collision is $e=\frac{1}{2}$ then $\frac{H}{h}$ shall be

Answer (4)

Sol. Defn of $e=\frac{1}{2}=\frac{\sqrt{2 g h}}{\sqrt{2 g H}}$

$$
\begin{aligned}
& \frac{1}{4}=\frac{h}{H} \\
\Rightarrow & 4
\end{aligned}
$$

22. Find equivalent resistance between A and B for given circuit in ohms.

Answer (1)

Sol. $\Rightarrow 5$ is short circuited
$\Rightarrow 2,2$ are parallel $\Rightarrow 1$
$\Rightarrow 1 \& 2$ in series $=3$
$R_{\text {eq }}=\frac{1}{3}(3)=1 \Omega$
23. A uniform disk of mass 50 kg is rolling with speed of $0.4 \mathrm{~m} / \mathrm{s}$. Find minimum energy (in J) required to bring the disk to rest.

Answer (6)

Sol. $K E=\frac{1}{2} m v_{\omega}^{2}+\frac{1}{2}\left(\frac{m r^{2}}{2}\right) \omega^{2}$
$\mathrm{K}=\frac{3}{4} m v^{2}$
$=\frac{3}{4} \times 50 \times(4) \times(0.4)$
$=6 \mathrm{~J}$
24. Mass defect in a nuclear reaction is 0.4 U . The Q value of the reaction is $\frac{x}{10} \mathrm{MeV}$, find x. Take $1 \mathrm{U}=$ $930.5 \mathrm{MeV} / \mathrm{c}^{2}$

Answer (372.2)
Sol. $\phi=\left[930.5 \times 0.4 \mathrm{MeV} / c^{2}\right] \times c^{2}$
$=372.2 \mathrm{MeV}$
25. At any instant, magnetic field inside a coil is 3000 T and it changes 2000 T in next 2 second. If average induced emf through coil is 22 Volt, then find number of turns of coil. (Area of turn is $2 \times 10^{-3} \mathrm{~m}^{2}$)

Answer (22)

Sol. From Faraday's law
Induced emf $(\mathrm{e})=-N \frac{d \Phi}{d t}$
$|22|=N\left|\frac{1000}{2}\right| \times 2 \times 10^{-3}$
$N=22$
26. A parallel plate capacitor with plates separated by 5 mm then it draws current of I_{0} from $A C$ source. Now a dielectric of thickness 2 mm is inserted between plates then current drawn increases by 25%. Find dielectric constant.

Answer (2)

Sol.

$$
\begin{aligned}
& i=\varepsilon_{0} \omega c \\
& i^{\prime}=\varepsilon \omega C^{\prime} \\
& \Rightarrow \frac{1}{1.25}=\frac{\varepsilon_{0} A}{5} \frac{c^{\prime}=\frac{\varepsilon_{0} A}{\frac{2}{k}}+3}{5} \\
& \Rightarrow 5=\frac{2.5}{k}+3.75 \\
& \Rightarrow 1.25=\frac{2.5}{k} \\
& \Rightarrow k=2
\end{aligned}
$$

27.
28.
29.
30.
