CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Statement $1: \mathrm{S}_{8}$ disproportionate into $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and S^{2-} in alkaline medium

Statement 2 : ClO_{4}^{-}undergoes disproportionation in acidic medium.
(1) Statement 1 is correct but statement 2 is incorrect
(2) Statement 1 is incorrect but statement 2 is correct
(3) Both statement 1 and statement 2 are correct
(4) Both statement 1 and statement 2 are incorrect

Answer (1)

Sol. (1)

(2) Cl is in its highest oxidation state (+7). It cannot be further oxidised

Therefore, statement 1 is correct but statement 2 is incorrect.
2. Which of the following is correct?
(1) $\left[\mathrm{NiCl}_{4}\right]^{2-}$ - diamagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - diamagnetic
(2) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - diamagnetic
$\left[\mathrm{NiCl}_{4}\right]^{2-}$ - paramagnetic
(3) $[\mathrm{NiCl} 4]^{2-}$ - paramagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - paramagnetic
(4) $[\mathrm{NiCl} 4]^{2-}$ - paramagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - diamagnetic

Answer (2)

Sol. $\mathrm{Ni}^{2+}: 4 s^{0} 3 d^{8}$ (No pairing with Cl^{-})
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]: 4 s^{0} 3 d^{10}$ (diamagnetic)
3. Statement-I : Among $15^{\text {th }}$ group hydrides reducing character decreases from NH_{3} to BiH_{3}.

Statement-II : $\mathrm{E}_{2} \mathrm{O}_{3}$ and $\mathrm{E}_{2} \mathrm{O}_{5}$ are always basic.
[Where E is group 15 element]
(1) Both statement-I and Statement-II are correct
(2) Statement-I is correct and Statement-II is false
(3) Statement-I is false and Statement-II is correct
(4) Both Statement-I and Statement-II are false

Answer (4)

Sol. Reducing character increases from NH_{3} to BiH_{3}. Group 15 oxides of type $\mathrm{E}_{2} \mathrm{O}_{3}$ and $\mathrm{E}_{2} \mathrm{O}_{5}$ are not always basic.
4. Which of the following has maximum ionic character?
(1) KCl
(2) AgCl
(3) CoCl_{2}
(4) BaCl_{2}

Answer (1)
Sol. Polarisation power $\propto \frac{\text { Charge }}{\text { Size }}$
for K^{+}, polarising power is least and ionic character is maximum.

Match the following :
(a) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(i) $\mathrm{t}_{29}^{2} \mathrm{eg}^{\circ}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(ii) $\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{eg}^{\circ}$
(c) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(iii) $\mathrm{t}_{29}^{3} \mathrm{eg}^{2}$
(d) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(iv) $\mathrm{t}_{29}^{6} \mathrm{eg}^{2}$
(1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Answer (1)
Sol. (a) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3} \rightarrow \mathrm{Cr}^{+3} \rightarrow \mathrm{t}_{29}^{3} \mathrm{eg}^{\circ}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3} \rightarrow \mathrm{Fe}^{3+} \rightarrow \mathrm{t}_{29}^{3} \mathrm{eg}^{2}$
(c) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6]}\right]^{+2} \rightarrow \mathrm{Ni}^{2+} \rightarrow \mathrm{t}_{29}^{6} \mathrm{eg}^{2}$
(d) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3} \rightarrow \mathrm{~V}^{3+} \rightarrow \mathrm{t}_{2 \mathrm{~g}}^{2} \mathrm{eg}^{\circ}$
6. Quantum number for outermost electron of K-atom are given by
(1) $n=4, I=0, m=0, s=\frac{1}{2}$
(2) $\mathrm{n}=4, \mathrm{I}=1, \mathrm{~m}=0, \mathrm{~s}=\frac{1}{2}$
(3) $n=3, I=0, m=0, s=\frac{1}{2}$
(4) $\mathrm{n}=4, \mathrm{I}=0, \mathrm{~m}=1, \mathrm{~s}=\frac{1}{2}$

Answer (1)

Sol. $\mathrm{K}_{19}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
For $4 s$ electron
$\mathrm{n}=4$
$I=0$
$\mathrm{m}=0$
$s=\frac{1}{2}$
7. What is the product formed in the below given reaction?

(1)

(2)

(3)

(4)

Answer (1)

Sol.

Markovnikov addition
8. What is the major product formed in the following reaction?

(1)

(2)

(3)

(4)

Answer (1)

Sol.

9. Identify the given rection

(1) Rosenmund reaction
(2) Stephen reaction
(3) Gattemann Koch reaction
(4) Etard reaction

Answer (3)
Sol. The given reaction is Gattemann Koch reaction.
10. Choose the correct answers.
(A) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is a oil at room temperature.
(B) $\mathrm{V}_{2} \mathrm{O}_{4}$ react with acid to give VO^{2+}
(C) CrO is a basic oxide
(D) $\mathrm{V}_{2} \mathrm{O}_{5}$ does not react with acids.
(1) A, B and C only
(2) B, C and D only
(3) A only
(4) B and C only

Answer (1)

Sol. A, B and C are correct.

- $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is a green oil at room temperature.
- $\mathrm{V}_{2} \mathrm{O}_{4}$ react with acids to give VO^{2+}.
- CrO is Basic and CrO_{3} is acidic.
- $\quad \mathrm{V}_{2} \mathrm{O}_{5}$ react with acids as well as alkali.
(Ref. NCERT Pg 224)

11. Consider the following reaction :

A and B respectively are
(1)
 $B=$

(2)

(3)

(4)

$B=$

Answer (2)

Sol.

12. What will be the reactivity order of following compounds towards electrophilic substitution reaction?

(1)

(2)

(3)

(4)
(1) 1 $>$ 3 $>2>4$
(2) $4>$ 1 $>2>3$
(3) $3>2>1>4$
(4) $4>3>1>2$

Answer (2)

Sol.

$\bigcirc-\mathrm{NO}_{2} \Rightarrow(-\mathrm{M}) \Rightarrow$ strongly deactivating
13. Correct IUPAC structure for the given organic compound is
2,2-Dibromo-1-phenylpentane
(1)

(2)

(3)

(4)

Answer (2)

Sol.

14. Statement-I : Aniline on reaction with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 475 K gives p -amino benzene sulphonic acid. This gives blood red colour with Lassaigne's test.

Statement-II : Aniline forms a salt with anhydrus AlCl_{3} in Friedel Craft's reaction.
(1) Both Statement-I and Statement-II are correct
(2) Both Statement-I and Statement-II are incorrect
(3) Statement-I is correct and Statement-II incorrect
(4) Statement-I is incorrect and Statement-II correct

Answer (1)

Sol.

p -amino benzene sulphonic acid contains both N and S , so it gives blood red colour with Lassaigne's test.
15. Consider the following reaction.

Select P
(Where Me is CH_{3})
(1)

(3)

(4)

Answer (1)

Sol.

is an example of azo coupling reaction and final product is methyl orange.
16. $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\frac{1}{2} \mathrm{C}(\mathrm{g})$

In the about reaction, the correct relation between $\mathrm{K}_{\mathrm{p}}, \alpha$ and equilibrium pressure (p) is
(1) $K_{p}=\frac{\alpha^{1 / 2} 2 p^{1 / 2}}{(2+\alpha)^{1 / 2}}$
(2) $K_{p}=\frac{\alpha^{1 / 2} \mathrm{p}^{3 / 2}}{(2+\alpha)^{3 / 2}}$
(3) $K_{p}=\frac{\alpha^{1 / 2} 2 p^{1 / 2}}{(2+\alpha)^{3 / 2}}$
(4) $\mathrm{K}_{\mathrm{p}}=\frac{\alpha^{3 / 2} \mathrm{p}^{1 / 2}}{(2+\alpha)^{1 / 2}(1-\alpha)}$

Answer (4)

Sol.

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\frac{1}{2}(\mathrm{~g}) \\
& \text { Initial n 0 } 0 \\
& \text { moles } \\
& \begin{array}{l}
\text { Eqb. } n(1-\alpha) \quad n \alpha \quad \frac{n \alpha}{2} \\
\text { moles }
\end{array} \\
& \text { total moles }=\mathrm{n}(1+\alpha)_{2} \\
& \underset{\text { pressure }}{\text { Eqb. }} \frac{(1-\alpha) p}{1+\frac{\alpha}{2}} \quad \frac{\alpha p}{1+\frac{\alpha}{2}} \quad \frac{\left(\frac{\alpha}{2}\right) p}{1+\frac{\alpha}{2}} \\
& K_{p}=\frac{\alpha p}{\left(1+\frac{\alpha}{2}\right)} \times\left[\frac{\alpha p}{(2+\alpha)}\right]^{\frac{1}{2}} \\
& \frac{(1-\alpha) p}{1+\frac{\alpha}{2}} \\
& K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(2+\alpha)^{1 / 2}(1-\alpha)}
\end{aligned}
$$

17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Half life of a first order reaction is 36 hr . Find out time (in hr) required for concentration of reactant to get reduced by 90%.

Answer (120)

Sol. $\mathrm{t}_{90}=\frac{2.303}{\mathrm{k}} \log \left(\frac{100}{100-90}\right)$

$$
=\frac{2.303 \times 36}{2.303 \times \log 2} \times \log 10=\frac{36}{0.3}=120
$$

22. A 1 mol ideal gas expands from 10 L to 100 L at 300 k , if above expansion takes place reversibly and isothermally then magnitude of work done is
\qquad (in KJ)

Answer (06)

Sol. $w=-n R T \ln \frac{V_{2}}{V_{1}}$

$$
|w|=2.303 n R T \log \frac{V_{2}}{V_{1}}
$$

$|w|=1 \times 2.303 \times 8.314 \times 300 \log \frac{100}{10}$
$|\mathrm{w}|=5744 \mathrm{~J}$
$|\mathrm{w}|=5.744 \mathrm{~kJ} \approx 6 \mathrm{~kJ}$
23. How many of the following vitamins are stored in Human Body?
A, B, C, D, E, K ?

Answer (4)

Sol. A, D, E, K vitamins are fat soluble vitamins, are stored in liver and adipose tissue.
While vitamin B and vitamin C are water soluble and must be supplied regularly in diet (not stored) (except vitamin B_{12})
(NCERT, Pg : 426)
24. Number of moles of H^{+}required by $1 \mathrm{~mole}_{\mathrm{MnO}}^{4}-$ to oxidize oxalate ion to CO_{2} is \qquad .

Answer (8)

Sol. The balanced reaction is as follows
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
2 mole MnO_{4}^{-}react with $16 \mathrm{~mole} \mathrm{H}^{+}$
$1 \mathrm{~mole}_{\mathrm{MnO}_{4}^{-}}$will react with 8 mole H^{+}
25. The potassium chloride is heated with potassium dichromate and conc. sulphuric acid to give products. The oxidation state of chromium in product is (+) \qquad .

Answer (06.00)

Sol. This is an example of chromyl chloride test

$$
\begin{aligned}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{KCl}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & 6 \\
& \mathrm{KHSO}_{4} \\
& +2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Oxidation state of Cr is +6 .
26. Number of structural isomeric products formed by monochlorination of 2-methylbutane in presence of sunlight is \qquad .
Answer (4)
Sol

27.
28.
29.
30.

