

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

 Statement 1 : S₈ disproportionate into H₂S₂O₃ and S²⁻ in alkaline medium

Statement 2 : CIO₄ undergoes disproportionation in acidic medium.

- (1) Statement 1 is correct but statement 2 is incorrect
- (2) Statement 1 is incorrect but statement 2 is correct
- (3) Both statement 1 and statement 2 are correct
- (4) Both statement 1 and statement 2 are incorrect

Answer (1)

Sol. (1) $\overset{\circ}{S}_8$ + NaOH \rightarrow Na₂ $\overset{\circ}{S}$ + Na₂S₂O

(2) Cl is in its highest oxidation state (+7). It cannot be further oxidised

Therefore, statement 1 is correct but statement 2 is incorrect.

- 2. Which of the following is correct?
 - (1) [NiCl₄]²⁻ diamagnetic

[Ni(CO)₄] - diamagnetic

(2) [Ni(CO)₄] – diamagnetic

[NiCl₄]²⁻ – paramagnetic

(3) [NiCl₄]²⁻ – paramagnetic

[Ni(CO)₄] – paramagnetic

(4) [NiCl₄]²⁻ – paramagnetic

[Ni(CO)₄] – diamagnetic

Answer (2)

Sol. Ni²⁺: $4s^03d^8$ (No pairing with Cl⁻)

[Ni(CO)₄]: 4s⁰3d¹⁰ (diamagnetic)

3. **Statement-I**: Among 15th group hydrides reducing character decreases from NH₃ to BiH₃.

Statement-II: E_2O_3 and E_2O_5 are always basic.

[Where E is group 15 element]

- (1) Both statement-I and Statement-II are correct
- (2) Statement-I is correct and Statement-II is false
- (3) Statement-I is false and Statement-II is correct
- (4) Both Statement-I and Statement-II are false

Answer (4)

Sol. Reducing character increases from NH $_3$ to BiH $_3$. Group 15 oxides of type E $_2$ O $_3$ and E $_2$ O $_5$ are not always basic.

- 4. Which of the following has maximum ionic character?
 - (1) KCI
- (2) AgCI
- (3) CoCl₂
- (4) BaCl₂

Answer (1)

Sol. Polarisation power $\propto \frac{\text{Charge}}{\text{Size}}$

for K⁺, polarising power is least and ionic character is maximum.

- 5. Match the following:
 - (a) $[Cr(H_2O)_6]^{+3}$
- (i) t₂-ea°
- (b) $[Fe(H_2O)_6]^{+3}$
- (ii) t₂₀eg^o
- (c) $[Ni(H_2O)_6]^{+2}$
- (iii) t³ eq²
- (d) $[V(H_2O)_6]^{+3}$
- (iv) $t_{2q}^{6} eg^{2}$
- (1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
- (4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Answer (1)

Sol. (a) $[Cr(H_2O)_6]^{+3} \rightarrow Cr^{+3} \rightarrow t_{2g}^3 eg^{\circ}$

(b) $[Fe(H_2O)_6]^{+3} \rightarrow Fe^{3+} \rightarrow t_{2g}^3 eg^2$

(c) [Ni(H₂O)₆]⁺² \rightarrow Ni²⁺ \rightarrow $t_{2g}^6 eg^2$

(d) $[V(H_2O)_6]^{+3} \rightarrow V^{3+} \rightarrow t_{2g}^2 eg^{\circ}$

6. Quantum number for outermost electron of K-atom are given by

(1)
$$n = 4$$
, $l = 0$, $m = 0$, $s = \frac{1}{2}$

(2)
$$n = 4$$
, $l = 1$, $m = 0$, $s = \frac{1}{2}$

(3)
$$n = 3$$
, $l = 0$, $m = 0$, $s = \frac{1}{2}$

(4)
$$n = 4$$
, $l = 0$, $m = 1$, $s = \frac{1}{2}$

Answer (1)

Sol. $K_{19} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

For 4s electron

$$n = 4$$

$$I = 0$$

$$m = 0$$

$$s=\frac{1}{2}$$

7. What is the product formed in the below given reaction?

Answer (1)

Sol. Markovnikov addition

8. What is the major product formed in the following reaction?

$$\begin{array}{c}
O \\
II \\
C
\end{array}$$

$$CI \xrightarrow{Anhydrous} ?$$

Answer (1)

Sol.

9. Identify the given rection

- (1) Rosenmund reaction
- (2) Stephen reaction
- (3) Gattemann Koch reaction
- (4) Etard reaction

Answer (3)

Sol. The given reaction is Gattemann Koch reaction.

- 10. Choose the correct answers.
 - (A) Mn₂O₇ is a oil at room temperature.
 - (B) V₂O₄ react with acid to give VO²⁺
 - (C) CrO is a basic oxide
 - (D) V₂O₅ does not react with acids.
 - (1) A, B and C only
- (2) B, C and D only
- (3) A only
- (4) B and C only

Answer (1)

Sol. A, B and C are correct.

- Mn₂O₇ is a green oil at room temperature.
- V₂O₄ react with acids to give VO²⁺.
- CrO is Basic and CrO₃ is acidic.
- V₂O₅ react with acids as well as alkali.

(Ref. NCERT Pg 224)

11. Consider the following reaction:

$$\begin{array}{c|c}
& & Conc. \ HNO_3 \\
\hline
& Conc. \ H_2SO_4
\end{array}$$
A $\xrightarrow{(i)}$ NaOH, 573 K $\xrightarrow{(ii)}$ dil. HCI

A and B respectively are

(1)
$$A = O_2N \longrightarrow NO_2$$
 $B = O_2N \longrightarrow NO_2$ $O_2N \longrightarrow NO_2$ $O_2N \longrightarrow NO_2$ $O_2N \longrightarrow NO_2$ $O_2N \longrightarrow NO_2$

(2)
$$A = \bigcirc \\ OH$$

$$NO_2$$

$$B = \bigcirc \\ NO_2$$

(4)
$$A = \bigcup_{NO_2} \bigcup_$$

Answer (2)

Sol.
$$O$$

$$\begin{array}{c}
\text{Br} \\
\text{Conc. HNO}_3 \\
\text{Conc. H}_2\text{SO}_4 \\
\text{[Nitration]}
\end{array}$$
 OH

$$(i) \text{ NaOH, 573 K}$$

$$(ii) \text{ dil. HCl}$$

$$NO_2$$

$$(A)$$
 OH

$$(ii) \text{ NaOH, 573 K}$$

$$(iii) \text{ dil. HCl}$$

$$(iii) \text{ dil. HCl}$$

$$(iii) \text{ dil. HCl}$$

$$(iii) \text{ dil. HCl}$$

12. What will be the reactivity order of following compounds towards electrophilic substitution reaction?

$$\bigcirc (1) (2) (3) (4)$$

$$\bigcap (2) (3) (4) (4)$$

- (1) 1 > 3 > 2 > 4
- (2) 4 > 1 > 2 > 3
- (3) 3 > 2 > 1 > 4
- (4) 4 > 3 > 1 > 2

Answer (2)

Sol. $\langle \bigcirc \rangle$ —CH₃ \Rightarrow activating (+I)

$$\left\langle \bigcirc \right\rangle$$
 H \Rightarrow Neutral (No effect)

$$\bigcirc$$
 NO₂ \Rightarrow (-M) \Rightarrow strongly deactivating

- 13. Correct IUPAC structure for the given organic compound is
 - 2,2-Dibromo-1-phenylpentane

Answer (2)

14. Statement-I: Aniline on reaction with concentrated H₂SO₄ at 475 K gives p-amino benzene sulphonic acid. This gives blood red colour with Lassaigne's test

Statement-II: Aniline forms a salt with anhydrus AlCl₃ in Friedel Craft's reaction.

- (1) Both Statement-I and Statement-II are correct
- (2) Both Statement-I and Statement-II are incorrect
- (3) Statement-I is correct and Statement-II incorrect
- (4) Statement-I is incorrect and Statement-II correct

Answer (1)

Sol.
$$\bigcirc$$
 $\xrightarrow{\text{Conc. H}_2\text{SO}_4}$ $\xrightarrow{\text{NH}_3^+}$ $\xrightarrow{\text{HSO}_4^-}$ $\xrightarrow{\text{NH}_3}$ $\xrightarrow{\text{NH}_3}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{P-amino benzene}}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{N$

p-amino benzene sulphonic acid contains both N and S, so it gives blood red colour with Lassaigne's test.

15. Consider the following reaction.

Me
$$N_2$$
 Me N_2^+ CI \longrightarrow Product (P) $SO_3^-Na^+$

Select P

Answer (1)

Sol. Me N2CI NMe2 NMe2
$$+$$
 O $+$ O

is an example of azo coupling reaction and final product is methyl orange.

16.
$$A(g) \rightleftharpoons B(g) + \frac{1}{2}C(g)$$

In the about reaction, the correct relation between K_p , α and equilibrium pressure (p) is

(1)
$$K_p = \frac{\alpha^{1/2} 2p^{1/2}}{(2+\alpha)^{1/2}}$$

(2)
$$K_p = \frac{\alpha^{1/2} p^{3/2}}{(2+\alpha)^{3/2}}$$

(3)
$$K_p = \frac{\alpha^{\frac{1}{2}} 2p^{\frac{1}{2}}}{(2+\alpha)^{3/2}}$$

(4)
$$K_p = \frac{\alpha^{3/2} p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}} (1-\alpha)}$$

Answer (4)

Sol.

$$A(g) \iff B(g) + \frac{1}{2}(g)$$

Initial n 0 0 moles

Eqb. $n(1 - \alpha)$ $n\alpha$ $n\alpha$ moles

total moles = $n(1+\alpha)$

Eqb.
$$\frac{(1-\alpha)p}{1+\frac{\alpha}{2}}$$
 $\frac{\alpha p}{1+\frac{\alpha}{2}}$ $\frac{\left(\frac{\alpha}{2}\right)p}{1+\frac{\alpha}{2}}$

$$K_{p} = \frac{\alpha p}{\left(1 + \frac{\alpha}{2}\right)} \times \left[\frac{\alpha p}{\left(2 + \alpha\right)}\right]^{\frac{1}{2}}$$
$$\frac{\left(1 - \alpha\right)p}{1 + \frac{\alpha}{2}}$$

$$K_{p} = \frac{\alpha^{3/2} p^{1/2}}{\left(2 + \alpha\right)^{1/2} \left(1 - \alpha\right)}$$

- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Half life of a first order reaction is 36 hr. Find out time (in hr) required for concentration of reactant to get reduced by 90%.

Answer (120)

Sol.
$$t_{90} = \frac{2.303}{k} log \left(\frac{100}{100 - 90} \right)$$

= $\frac{2.303 \times 36}{2.303 \times log 2} \times log 10 = \frac{36}{0.3} = 120$

22. A 1 mol ideal gas expands from 10 L to 100 L at 300 k, if above expansion takes place reversibly and isothermally then magnitude of work done is _____ (in KJ)

Answer (06)

Sol.
$$w = -nRT \ln \frac{V_2}{V_1}$$

$$|w| = 2.303 \text{ nRT log} \frac{V_2}{V_1}$$

$$|w| = 1 \times 2.303 \times 8.314 \times 300 \log \frac{100}{10}$$

|w| = 5744 J

 $|w| = 5.744 \text{ kJ} \approx 6 \text{ kJ}$

23. How many of the following vitamins are stored in Human Body?

A, B, C, D, E, K?

Answer (4)

Sol. A, D, E, K vitamins are fat soluble vitamins, are stored in liver and adipose tissue.

While vitamin B and vitamin C are water soluble and must be supplied regularly in diet (not stored) (except vitamin B_{12}) (NCERT, Pg : 426)

24. Number of moles of H⁺ required by 1 mole MnO₄⁻ to oxidize oxalate ion to CO₂ is____.

Answer (8)

Sol. The balanced reaction is as follows

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

2 mole MnO₄ react with 16 mole H+

1 mole MnO₄ will react with 8 mole H+

25. The potassium chloride is heated with potassium dichromate and conc. sulphuric acid to give products. The oxidation state of chromium in product is (+)_____.

Answer (06.00)

Sol. This is an example of chromyl chloride test

$$K_2Cr_2O_7 + 4KCI + 6H_2SO_4 \rightarrow 6KHSO_4$$

Oxidation state of Cr is +6.

26. Number of structural isomeric products formed by monochlorination of 2-methylbutane in presence of sunlight is_____.

Answer (4)

- 27.
- 28.
- 29.
- 30.