CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. In Kjeldahl's estimation of nitrogen, CuSO_{4} act as
(1) Oxidizing agent
(2) Reducing agent
(3) Catalyst
(4) Reagent

Answer (3)

Sol. CuSO_{4} acts as catalyst in Kjeldahl's method of estimation of nitrogen.
2. Which of the following is most likely attacked by electrophile?
(1)

(2)

(3)

(4)

Answer (2)

Sol. Order of reactivity towards electrophile

Strength of $+\mathrm{M} /+\mathrm{R}$: $-\mathrm{OH}>-\mathrm{CH}_{3}>-\mathrm{Cl}$
In case of halogens, their -I effect dominates over
 reactive than for incoming electrophile.
3. Statement-I: PH_{3} will have low boiling point than NH_{3}.

Statement-II: There are strong van der Wall forces in NH_{3} and strong hydrogen-bonding in PH_{3}.
(1) Statement-I and statement-II both are true
(2) Statement-I and statement-II both are false
(3) Statement-I is true but statement-II is false
(4) Statement-I is false but statement-II is true

Answer (3)
Sol. Boiling point: $\stackrel{(239.7)}{\mathrm{NH}_{3}>\mathrm{PH}_{3}}$ due to hydrogen bonding in NH_{3}.
4. Which of the following have trigonal bipyramidal shape?
$\mathrm{PF}_{5}, \mathrm{PBr}_{5},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{SF}_{6}, \mathrm{BF}_{3}, \mathrm{BrF}_{5}, \mathrm{PCl}_{5},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(1) $\mathrm{PF}_{5}, \mathrm{PBr}_{5}, \mathrm{PCl}_{5}$ and $\mathrm{Fe}(\mathrm{CO})_{5}$ only
(2) $\mathrm{BrF}_{5}, \mathrm{PF}_{5}, \mathrm{PCl}_{5}$ and PBr_{5} only
(3) $\mathrm{PF}_{5}, \mathrm{PCl}_{5}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ only
(4) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right], \mathrm{BrF}_{5}, \mathrm{PF}_{5}, \mathrm{PBr}_{5}, \mathrm{PCl}_{5}$ only

Answer (1)

Sol. $\mathrm{PF}_{5}, \mathrm{PCl}_{5}, \mathrm{PBr}_{5}, \mathrm{Fe}(\mathrm{CO})_{5} \Rightarrow$ Trigonal bipyramidal
$\mathrm{BrF}_{5} \Rightarrow$ Square pyramidal
$\left[\mathrm{PtCl}_{4}\right]^{2-} \Rightarrow$ Square planar
$\mathrm{SF}_{6} \Rightarrow$ Octahedral
5. Which of the following is correct for adiabatic free expansion against vacuum
(1) $q=0, \Delta U=0, W=0$
(2) $q \neq 0, W=0, \Delta U=0$
(3) $q=0, \Delta U \neq 0, W=0$
(4) $q=0, \Delta U \neq 0, W \neq 0$

Answer (1)
Sol. $q=0$ as adiabatic process is given
$W=0$ as $p_{\text {ext }}=0$
$q+W=\Delta U$
$q=0$
W = 0
$\Rightarrow \Delta U=0$
6. Which of the following is the correct plot between λ (de Broglie wavelength) and p (momentum)?
(1)

(2)

(3)

(4)

Answer (1)

Sol. $\lambda=\frac{\mathrm{h}}{\mathrm{p}}\left[\lambda \propto \frac{1}{\mathrm{p}}\right]$
$\Rightarrow \lambda \mathrm{p}=\mathrm{h}$ (constant)
So, the plot is a rectangular hyperbola.

7. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{xH}^{+}+\mathrm{ye}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{AH}_{2} \mathrm{O}$

Balance the above reaction and find x, y and A.
(1) $x=7, y=6, A=14$
(2) $x=14, y=6, A=7$
(3) $x=14, y=3, A=7$
(4) $x=8, y=2, A=1$

Answer (2)

Sol. The balanced reaction is,
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$x=14$
$y=6$
A $=7$
8. Complementary strand of DNA

ATGCTTCA is:
(1) TACGAAGA
(2) TACGAAGT
(3) TAGCAACA
(4) TAGCTACT

Answer (2)

Sol. Adenine base pairs with thymine with 2 hydrogen bonds and cytosine base pairs with guanine with 3 hydrogen bonds.
A T G C T T C A-DNA strand
|| || ||I |II || || ||I ||
T A C G A A G T \rightarrow Complementary strand
9. What is the pH of $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{NH}_{4}{ }^{+}$salt?

Given K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-6}$
K_{b} of $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-6}$
(At $25^{\circ} \mathrm{C}$)
(1) 7
(2) 9
(3) 8.9
(4) 7.8

Answer (1)

Sol. $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}}{2}$
$\mathrm{pK}_{\mathrm{a}}=\mathrm{pK} \mathrm{b}_{\mathrm{b}}$
$\Rightarrow \mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2}=7$
10. We are given with 3 NaCl samples and their van't Hoff factors

Sample	van't Hoff factor
Sample-1 $(0.1 \mathrm{M})$	i_{1}
Sample-2 $(0.01 \mathrm{M})$	i_{2}
Sample-3 $(0.001 \mathrm{M})$	i_{3}

Choose the correct answer.
(1) $i_{1}=i_{2}=i_{3}$
(2) $i_{1}>i_{2}>i_{3}$
(3) $i_{3}>i_{2}>i_{1}$
(4) $i_{1}>i_{3}>i_{2}$

Answer (1)
Sol. As NaCl is strong electrolyte, its degree of dissociation (α) will remain same.

$$
i=2
$$

For each sample,

$$
\mathrm{i}_{1}=\mathrm{i}_{2}=\mathrm{i}_{3}
$$

11.

A and B in above reaction is
(1) (A)

(B)

(2)

(B)

(3) (A)

(B)

(4) (A)

(B)

Answer (3)

Sol.

12. We have a mixture of gases having 2 moles of monoatomic gas $\left(C_{v, m}=\frac{3 R}{2}\right)$ and 6 moles of diatomic gas $\left(C_{v, m}=\frac{5 R}{2}\right)$. Find out molar heat capacity $\left(\mathrm{C}_{\mathrm{vm}}\right)$ of the mixture.
(1) $\frac{9 R}{4}$
(2) $\frac{9 R}{2}$
(3) $3 R$
(4) $4 R$

Answer (1)

Sol. $C_{v m}=\frac{2\left(\frac{3 R}{2}\right)+6\left(\frac{5 R}{2}\right)}{2+6}$

$$
\begin{aligned}
& =\frac{3 R+15 R}{8}=\frac{18 R}{8} \\
& =\frac{9 R}{4}(\text { option }(1))
\end{aligned}
$$

13. Assertion (A): KCN react with $R-X$ to give cyanide and $A g C N$ reacts with $R-X$ to give isocyanide mainly.

Reason (R): KCN and AgCN both are ionic compounds
(1) Both Assertion and Reason are true and Reason explains Assertion
(2) Both Assertion and Reason is true but Reason does not explains Assertion
(3) Assertion is true and Reason is false
(4) Assertion is false but reason is true

Answer (3)

Sol. $\mathrm{KCN} \longrightarrow \stackrel{+}{\mathrm{K}}+\mathrm{CN}^{-}$
$\mathrm{R}-\mathrm{X}+\mathrm{KCN} \longrightarrow \mathrm{R}-\mathrm{CN}+\mathrm{KX}$
$\mathrm{R}-\mathrm{X}+\mathrm{AgCN} \longrightarrow \mathrm{R}-\mathrm{NC}+\mathrm{AgX}$
KCN is ionic therefore ionised and attack occurs through carbon.

AgCN is covalent therefore attack starts with Nitrogen.
14. Consider the following two statements.

Statement I: $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is of green colour Statement II : $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless
(1) Statement I is true, statement II is false
(2) Statement I is true, statement II is true
(3) Statement I is false, statement II is true
(4) Statement I is false, statement II is false

Answer (2)

Sol. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is octahedral and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar.
In $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Ni}^{2+}$ has two unpaired electrons and in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \Rightarrow \mathrm{Ni}^{2+}$ has no unpaired electrons.
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is coloured as it absorbs red light due to suitable d-d transition and complementary light emitted is green.
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ has strong field ligand so the electrons of Ni^{2+} pair up and it is colourless as it cannot absorb light from visible region.
15. Statement-I: Potassium hydrogen phthalate is primary standard for NaOH solution.

Statement-II: Phenolphthalein is used to detect completion of titration.
(1) Both statement-I and statement-II are correct
(2) Statement-I is correct and statement-II is incorrect
(3) Statement-I is incorrect and statement-II is correct
(4) Both statement-I and statement-II are incorrect

Answer (1)

Sol. Potassium hydrogen phthalate is used to standardize NaOH solutions.

Phenolphthalein is used as an indicator to detect completion of titrations.
16. Statement-I: In aniline, $-\mathrm{NH}_{2}$ group is strong deactivating group for all ESR.
Statement-II: Aniline does not show Friedel-Craft alkylation reaction.
(1) Both statement-I and statement-II are correct
(2) Both statement-I and statement-II are incorrect
(3) Statement-I is correct and statement-II is incorrect
(4) Statement-I is incorrect and statement-II is correct

Answer (4)

Sol. In aniline $-\mathrm{NH}_{2}$ is strong activating group due to presence of lone pair in nitrogen.

Aniline does not show Friedel-Craft alkylation reaction, because anhydrous AICl_{3} and aniline form salt together

17. Which of the following is homoleptic complex?
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(2) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
(3) $\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]^{2-}$
(4) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Answer (1)

Sol. Homoleptic complexes in which a metal is bound to only one kind of donor groups/ligands.
18. For ionic reaction in organic compound which type of bond cleavage occur?
(1) Heterolytic cleavage
(2) Homolytic cleavage
(3) Free radical
(4) No cleavage of bond

Answer (1)

Sol. In heterolytic bond cleavage ions are formed. hence for ionic reaction in organic compound heterolytic bond cleavage takes place.
19. Ka values of three acids A, B and C are $10^{-3}, 5 \times$ $10^{-9}, 9 \times 10^{-11}$ respectively. The acidic strength order of these acids is
(1) A $>$ B $>$ C
(2) $B>$ A $>C$
(3) C $>$ B $>$ A
(4) $C>A>B$

Answer (1)
Sol. Higher the value of K_{a}, more is the acidic strength.
20. Which of the following is a disproportionation reaction?
A. $\mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
B. $\mathrm{MnO}_{4}^{2-} \longrightarrow \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CrO}_{4}^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(1) All A, B, C and D
(2) A and B only
(3) A and C only
(4) A, B and C only

Answer (4)

Sol. Disproportionation reaction is a reaction in which a substance (element) is simultaneously oxidised and reduced.

D. $\stackrel{+6}{\mathrm{CrO}}_{4}^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$ (Reduction only)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Find out total possible optical isomers of 2chlorobutane.

Answer (2)

Sol.

There is one chiral centre present in given compound which is unsymmetrical.
Total number of isomers $=2^{n}$
$\mathrm{n}=$ number of stereogenic centre
$\mathrm{n}=1$
$=2^{1}$
$=2$
Total two optical isomers are possible

22. We are given with following cell reaction :

$$
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}
$$

$\mathrm{P}_{\mathrm{H}_{2}}=2 \mathrm{~atm}$
$\left[\mathrm{H}^{+}\right]=1 \mathrm{M}$
$\left(\frac{2.303 R T}{F}=0.06\right)$
If $E_{\text {cell }}$ for reaction is given by $-x \times 10^{-3} \mathrm{~V}$, find out x.

Answer (9)

Sol. $E_{\text {cell }}=0-\frac{0.06}{2} \log 2$

$$
\begin{aligned}
& =-0.03(0.3) \\
& =-0.009 \\
& =-9 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

$$
x=9
$$

23. Total number of deactivating groups among the following

Answer (2)
Sol. $-\mathrm{C} \equiv \mathrm{N},-\mathrm{C}-\mathrm{CH}_{3}$ are -R group which is deactivating
$-\stackrel{\mathrm{N}}{\mathrm{N}} \mathrm{\|}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$ and $-\ddot{\mathrm{N}} \mathrm{H}-\mathrm{CH}_{3}$ due to presence of lone pair in nitrogen atom behaves as activating (+R) group.
24. How many oxides are amphoteric in nature?
$\mathrm{SnO}_{2}, \mathrm{PbO}_{2}, \mathrm{SiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$
Answer (3)
Sol. Amphoteric oxides are those which can react with both acid and base
$\mathrm{SnO}_{2}, \mathrm{PbO}_{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are amphoteric oxide
$\mathrm{SiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{CO}_{2}$ are acidic oxides
CO, NO and $\mathrm{N}_{2} \mathrm{O}$ are neutral oxides
25. For carbon dating of a wood sample $\left(\frac{C^{14}}{C^{12}}\right)_{t}=\frac{1}{8}\left(\frac{C^{14}}{C^{12}}\right)_{t=0}$. If Half life of C^{14} is 1580 years what is the life of wood sample (in yr)
Answer (4740)
Sol. $\left(\frac{C^{14}}{C^{12}}\right)_{t}=\frac{\left(\frac{C^{14}}{C^{12}}\right)_{t=0}}{(2)^{n}}$
$\mathrm{n}=3$
$\mathrm{t}=3 \times 1580$
$=4740$ years
26. What is the minimum energy (in eV) required for an electron to excite from ground state to $1^{\text {st }}$ excited state for hydrogen atom?

Answer (10)

Sol. $\mathrm{n}_{1}=1$
$\mathrm{n}_{2}=2$
$\Delta \mathrm{E}=13.6 \mathrm{Z}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$\Delta E=13.6\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
$\Delta E=13.6\left(1-\frac{1}{4}\right)$
$\Delta E=13.6 \times \frac{3}{4} e V$
$=10.05 \mathrm{eV} \approx 10 \mathrm{eV}$
27. Find out moles of precipitate product formed when 72 moles of PbCl_{2} reacts with 50 moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

Answer (50)

Sol. $\mathrm{PbCl}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{PbSO}_{4} \downarrow+2 \mathrm{NH}_{4} \mathrm{Cl}$

Moles of PbSO_{4} formed $=50 \mathrm{~mol}$
28.
29.
30.

