CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Number of radial nodes present in $3 p$.
(1) 0
(2) 1
(3) 2
(4) 4

Answer (2)

Sol. Number of radial nodes $=\mathrm{n}-\mathrm{I}-1$
$n=3, l=1$
= 3-1-1
$=1$
2. Which of the following compound has intramolecular hydrogen bonding in it.

(1) NH_{3}

(2)

(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Answer (2)

Sol. In $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ intermolecular H -bonding is present

3. Which of the following has highest $3^{\text {rd }}$ ionization energy?
(1) Mn
(2) V
(3) Cr
(4) Fe

Answer (1)

Sol. Mn has highest $3^{\text {rd }}$ I.E. among the given elements due to d^{5} configuration.

According to NCERT,

Element	$\mathrm{IE}_{3}(\mathrm{~kJ} / \mathrm{mol})$
V	2833
Cr	2990
Mn	3260
Fe	2962

4. Which of the following compound has colour due to $d-d$ transition?
(1) KMnO_{4}
(2) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(3) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(4) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Answer (4)

Sol. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour. The water molecules causes splitting of d orbitals. This facilitates d - d transition and colour.
5. Solubility of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in 100 ml of pure water is w gm. Find out $\mathrm{ksp}_{\text {sp }}$ of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
($\mathrm{M}=$ molecular mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$)
(1) $108 \times\left(\frac{w}{m}\right)^{5}$
(2) $108 \times 10^{4}\left(\frac{\mathrm{w}}{\mathrm{m}}\right)^{5}$
(3) $108 \times 10^{5}\left(\frac{\mathrm{w}}{\mathrm{m}}\right)^{5}$
(4) $108 \times 10^{6}\left(\frac{\mathrm{w}}{\mathrm{m}}\right)^{5}$

Answer (3)

Sol. Solubility $(s)=\frac{10 \mathrm{w}}{\mathrm{M}} \frac{\mathrm{mol}}{\text { lit }}$

$$
\begin{aligned}
\mathrm{k}_{\text {sp }} & =(x)^{y}(y)^{y}(s)^{(x+y)} \\
& =(2)^{2}(3)^{3}\left(\frac{10 w}{M}\right)^{5} \\
& =108\left(\frac{10 w}{M}\right)^{5} \\
& =\frac{108 w}{M} \times 10^{5}
\end{aligned}
$$

6. Which of the following set of elements can be detected by Lassaigne's test
(1) N, S only
(2) N, P, S only
(3) Halogens P only
(4) N, P, S, halogens

Answer (4)

Sol. Nitrogen, sulphur, halogens and phosphorus present in an organic compound are detected by Lassaigne's test. (Reference NCERT Pg. 354)
7. Which of the following compound in 3d series does not show +3 oxidation state?
(1) V
(2) Cr
(3) Mn
(4) Cu

Answer (4)

Sol. Cu shows only +1 and +2 oxidation state.
8. What is the order of reducing character for AsH_{3}, $\mathrm{NH}_{3}, \mathrm{PH}_{3}$ (Group 15 hydrides)
(1) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}$
(2) $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}$
(3) $\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(4) $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$

Answer (3)

Sol. As we move down the group, bond length increases, bond strength decreases, hence reducing character increases.
9. Highest B.P. is of :
(1) Butanol
(2) Diethylether
(3) Butane
(4) Butanal

Answer (1)

Sol. Butanol has highest B.P. due to H -bonding.
Butanol > Butanal > Diethylether > Butane
(Ref: NCERT Pg : 365)
10. Consider the following two statements.

Statement I: $\pi_{2 p}$ bonding molecular orbital has low electron density above and below internuclear axis.

Statement II : $\pi_{2 p}^{*}$ antibonding molecular orbital has only one nodal plane.
(1) Statement I : True
Statement II : True
(2) Statement I : False
3) Statement I : False
Statement II : True

Statement II : False

(4) Statement I : True

Statement II : False

Answer (2)

Sol.

11. Match the following.

	Column I		Column II (Uses)
(i)	CCl_{4}	(p)	Refrigerator and A.C.
(ii)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	(q)	Non-biodegradable insecticide
(iii)	Freons	(r)	Fire extinguisher
(iv)	DDT	(s)	Paint remover

(1) i-(r), ii-(s), iii-(p), iv-(q)
(2) i-(s), ii-(p), iii-(r), iv-(q)
(3) $\mathrm{i}-(\mathrm{p}), \mathrm{ii}-(\mathrm{r}), \mathrm{iii}-(\mathrm{q})$, iv-(s)
(4) $\mathrm{i}-(\mathrm{q}), \mathrm{ii}-(\mathrm{p})$, iii-(r), iv-(s)

Answer (1)

Sol. (i) CCl_{4} used as fire extinguisher
(ii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ used as paint remover
(iii) Freons are used in refrigerator and A.C
(iv) DDT is used as non-biodegradable insecticide
12. For complexes (I) and (II).

Choose the correct statement.
I: $\left[\mathrm{CoF}_{6}\right]^{3-}$
II: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(1) I: Outer orbital complex

II: Inner orbital complex
(2) I: Outer orbital complex

II: Outer orbital complex
(3) I: Inner orbital complex

II: Inner orbital complex
(4) I: Inner orbital complex

II: Outer orbital complex

Answer (1)

Sol. I: $\left[\mathrm{CoF}_{6}\right]^{3-}$
$\mathrm{Co}^{3+}=4 s^{0} 3 d^{6}$
with F^{-}, no pairing will take place

$$
\Rightarrow \text { Outer orbital complex }\left(s p^{3} d^{2}\right)
$$

II: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

$$
\mathrm{Co}^{3+}=4 s^{0} 3 d^{6}
$$

with NH_{3}, pairing will take place
\Rightarrow Inner orbit complex ($d^{2} s p^{3}$)
13. While of the following represents meta directing groups?
(1) $-\mathrm{NO}_{2},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH},-\mathrm{CHO},-\mathrm{OH}$
(2) $-\mathrm{CH}_{3},-\mathrm{OH},-\mathrm{OCH}_{3},-\mathrm{Ph}$
(3)

(4)

Answer (3)

Sol. The correct option which represents meta directing groups \rightarrow (3) $-\mathrm{NO}_{2},-\mathrm{COOH},-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{R},-\mathrm{CHO}$
$-\mathrm{OH},-\mathrm{NH}_{2},-\mathrm{CH}_{3}$ are o/p directing
Therefore, options (1), (2) and (4) are incorrect.
14. Statement I : Ni^{2+} with dmg shows red colouration.

Statement II : Fe^{2+} and Fe^{3+} both are blue coloured.
(1) Both statements I and II are correct
(2) Both statements I and II are incorrect
(3) Statement I is correct and statement II is incorrect
(4) Statement I is incorrect and statement II is correct

Answer (3)

Sol.

Fe^{2+} forms green ppt. of $\mathrm{Fe}(\mathrm{OH})_{2}$
Fe^{3+} forms reddish Brown ppt of $\mathrm{Fe}(\mathrm{OH})_{3}$
\therefore Statement-I \Rightarrow Correct, Statement-II

$$
\Rightarrow \text { Incorrect. }
$$

15. Consider the following reactions:
(i)

(ii) But-2-yne $\xrightarrow[\mathrm{Na} / \mathrm{L} \text { Liq } \mathrm{NH}_{3}]{\mathrm{H}_{2}} \mathrm{~B}$

Identify A and B
(1) A = Pentyne and
$B=$ cis But-2-ene
(2) $A=$ Pent-3-yne
$B=$ trans But-2-ene
(3) A = Pent-2-yne and
$B=$ trans But-2-ene
(4) A = Pent-2-yne and $B=$ cis But-2-ene

Answer (3)

Sol. (i) $\underset{\text { (A) }}{\text { Pent-2-yne }} \xrightarrow[\substack{\text { Pd/BaSO } \\ \text { (Lindlar's catalyst) }}]{\mathrm{H}_{2}}$ cis pent-2-ene
(ii) But-2-yne $\xrightarrow[\mathrm{Na} / \mathrm{Liq} \mathrm{NH}_{3}]{\mathrm{H}_{2}}$ trans But-2-ene
[This is Birch reduction]
16. Statement-I : SiO_{2} and GeO_{2} are acidic, SnO and PbO are amphoteric

Statement-II: Allotropes of carbon are formed due to catenation and $d \pi-p \pi$ bond
(1) Statement-I and Statement-II both correct
(2) Statement-I and Statement-II both incorrect
(3) Statement-I correct and Statement-II both incorrect
(4) Statement-I and Statement-II both incorrect

Answer (3)

Sol. SiO_{2} and GeO_{2} are acidic and $\mathrm{SnO}, \mathrm{PbO}$ are amphoteric

Carbon does not have d orbital cannot for $d \pi-d \pi$ bond
17. Statement-I : In p and d block both metals and nonmetals are present.

Statement-II : Electronegativity and ionisation enthalpy of metals is greater than non-metals.
(1) Both statement-I and II are correct.
(2) Both statement-I and II are incorrect.
(3) Statement-I is correct and statement-II is incorrect.
(4) Statement-I is incorrect and statement-II is correct.

Answer (2)

Sol. In p-block both metals and non-metals are present but in d-block only metals are present.

Electronegativity and I.E. of non-metals is greater than that of metals
18. Match the List-I and List-II
(A)
(1) $\mathrm{A} \rightarrow$ (i); B \rightarrow (ii); C \rightarrow (iii); $\mathrm{D} \rightarrow$ (iv)
(2) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iv); $\mathrm{C} \rightarrow$ (iii); $\mathrm{D} \rightarrow$ (ii)
(3) $\mathrm{A} \rightarrow$ (iv); B \rightarrow (iii); C \rightarrow (ii); $\mathrm{D} \rightarrow$ (i)
(4) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (vi)

Answer (3)

Sol.

Reimer-Tiemann reaction

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A 10 mL hydrocarbon $\left(\mathrm{C}_{x} \mathrm{H}_{y}\right)$ on combustion give $40 \mathrm{~mL} \mathrm{CO}_{2}$ and $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Calculate the value of $x+y$.

Answer (14)

Sol.
$\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \rightarrow \mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{~mL} \quad 40 \mathrm{~mL} \quad 50 \mathrm{~mL}$
10 mL of $\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}$ produces 40 mL of CO_{2} means 1 mL of CO_{2} will produce 4 mL of CO_{2}

Value of $x=4$
10 mL of $\mathrm{C}_{x} \mathrm{H}_{y}$ produces 50 mL of $\mathrm{H}_{2} \mathrm{O}$
$\frac{y}{2}=5 \Rightarrow y=10$
So hydrocarbon $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$ is $\mathrm{C}_{4} \mathrm{H}_{10}$
$x=4$
$y=10$
$x+y=14$
22. When electron transition from $2^{\text {nd }}$ to $1^{\text {st }}$ orbit takes place, the frequency of photon emitted is 3×10^{15} Hz . The frequency of photon emitted when electron transitions from $3^{\text {rd }}$ to $1^{\text {st }}$ orbit is \qquad $\times 10^{15} \mathrm{~Hz}$. [Nearest Integer]

Answer (4)

Sol. $v \propto\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
$\frac{v_{3 \rightarrow 1}}{v_{2 \rightarrow 1}}=\frac{\left(1-\frac{1}{9}\right)}{\left(1-\frac{1}{4}\right)}$

$$
\begin{aligned}
v_{3 \rightarrow 1} & =3 \times 10^{15} \times \frac{8}{9} \times \frac{4}{3} \\
& =3.56 \times 10^{15} \mathrm{~Hz}
\end{aligned}
$$

23. Ethylene glycol of x kg is mixed with 18.6 kg of solvent, $24^{\circ} \mathrm{C}$ depression in freezing point takes place. Calculate value of x.
(Given $\mathrm{K}_{\mathrm{f}}=1.6^{\circ} \mathrm{C} / \mathrm{molal}$
MW of ethylene glycol $=62 \mathrm{~g} / \mathrm{mol}$)

Answer (17)

Sol. $\Delta T_{f}=i \times k_{f} \times m$
$24=1 \times 1.6 \times \frac{\text { mass of ethylene glycol in gram }}{62 \times 18.6}$
mass of ethylene glycol (in g) $=\frac{24 \times 62 \times 18.6}{1.6}$
$=17298 \mathrm{~g}$
$x=17.298 \approx 17 \mathrm{~kg}$
24. For a first order reaction
$A \rightarrow 2 B+C$
following data is given

S. No.	Time(s)	Total pressure (atm)
1	0	0.1
2	115	0.28

If the value of rate constant is $x \sec ^{-1}$, the value of $100 x$ is

Answer (2)

Sol.
$\quad A \longrightarrow 2 B+C$
$t=0 \quad 0.1$
$t=115 \mathrm{~s} \quad 0.1-x \quad 2 x \quad x$
$0.1-x+2 x+x=0.28$
$\Rightarrow 0.1+2 x=0.28$
$\quad x=0.09$
$\ln \frac{0.1}{(0.1-x)}=k t$
$\Rightarrow \ln \left(\frac{0.1}{0.01}\right)=k \times 115$
$\Rightarrow \frac{\ln 10}{115}=k$
$\Rightarrow k=\frac{2.303}{115}$
$\Rightarrow k=0.02$
$\Rightarrow 100 k=2$
25. Consider the following reaction :

Product mixture consist of how many isomeric products?

Answer (6)

Sol.

Hence product mixture consist of four structural isomers with two enantiomeric pairs. So the total isomeric products are 6.
26. Find out charge (in C) required to electrolysis of 1 mole of $\mathrm{H}_{2} \mathrm{O}$ to produce O_{2} on one of the electrodes
($\mathrm{F}=96500 \mathrm{C}$)

Answer (193000)

Sol. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
Charge required $=2 \times 96500=193000$
27. Number of non-cyclic tripeptides formed by using 3 amino acids without repeating them is

Answer (6)

Sol. There are 3 possible first amino acids. Then there are 2 possible second amino acids.

After 2 amino acids are fixed there is only 1 option left for $3^{\text {rd }}$ amino acid.

Total tripeptide $=3 \times 2 \times 1=6$
28. In an equilibrium reaction
$A \rightleftharpoons B$ at 300 K , the

Equilibrium constant K value is 10 . Then $\Delta \mathrm{G}^{\circ}$ is $-\mathrm{x} \times 10^{-1} \mathrm{~kJ}$. Find x .

Answer (57)

Sol. $\Delta G^{\circ}=-R T \operatorname{In} K_{\text {eq }}$
$\Delta G^{\circ}=-2.303 R T \log K_{\text {eq }}$
$\mathrm{K}_{\mathrm{eq}}=10$
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K}^{-} \mathrm{mol}$
$\mathrm{T}=300 \mathrm{~K}$
$\Delta G^{\circ}=-2.303 \times 8.314 \times 300 \log 10$
$=-5744.14 \mathrm{~J}=-5.744 \mathrm{~kJ}$
$=-57.44 \times 10^{-1} \mathrm{~kJ}$
$x \approx 57$
29
30.

