

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Number of radial nodes present in 3p.
 - (1) 0
 - (2) 1
 - (3) 2
 - (4) 4

Answer (2)

Sol. Number of radial nodes = n - l - 1

- n = 3, l = 1
- = 3 1 1
- = 1
- Which of the following compound has intramolecular hydrogen bonding in it.

(1) NH₃

(3) H₂O

(2)

(4) C₂H₅OH

OH

NO,

Answer (2)

Sol. In NH₃, H₂O and C₂H₅OH intermolecular H-bonding is present

3. Which of the following has highest 3rd ionization energy?

(1) Mn (2) V	(1)	Mn	(2)	V
--------------	-----	----	-----	---

(3) Cr (4) Fe

Answer (1)

Sol. Mn has highest 3rd I.E. among the given elements due to *d*⁵ configuration.

According to NCERT,

Element	IE ₃ (kJ/mol)
V	2833
Cr	2990
Mn	3260
Fe	2962

- 4. Which of the following compound has colour due to *d-d* transition?
 - (1) KMnO₄
 - (2) K₂Cr₂O₇
 - (3) K₂CrO₄
 - (4) CuSO₄·5H₂O

Answer (4)

- **Sol.** $CuSO_4 \cdot 5H_2O$ is blue in colour. The water molecules causes splitting of *d* orbitals. This facilitates *d*-*d* transition and colour.
- Solubility of Ca₃(PO₄)₂ in 100 ml of pure water is w gm. Find out k_{sp} of Ca₃(PO₄)₂

(M = molecular mass of Ca₃(PO₄)₂)

(1)
$$108 \times \left(\frac{w}{m}\right)^5$$

(2) $108 \times 10^4 \left(\frac{w}{m}\right)^5$
(3) $108 \times 10^5 \left(\frac{w}{m}\right)^5$
(4) $108 \times 10^6 \left(\frac{w}{m}\right)^5$

Answer (3)

Sol. Solubility (s) = $\frac{10w}{M} \frac{\text{mol}}{\text{lit}}$ $k_{sp} = (x)^y (y)^y (s)^{(x+y)}$ $= (2)^2 (3)^3 \left(\frac{10w}{M}\right)^5$ $= 108 \left(\frac{10w}{M}\right)^5$

$$=\frac{108w}{M}\times10^5$$

- Which of the following set of elements can be detected by Lassaigne's test
 - (1) N, S only
 - (2) N, P, S only
 - (3) Halogens P only
 - (4) N, P, S, halogens

Answer (4)

- Sol. Nitrogen, sulphur, halogens and phosphorus present in an organic compound are detected by Lassaigne's test. (Reference NCERT Pg. 354)
- Which of the following compound in 3d series does not show +3 oxidation state?
 - (1) V
 - (2) Cr
 - (3) Mn
 - (4) Cu

Answer (4)

- **Sol.** Cu shows only +1 and +2 oxidation state.
- What is the order of reducing character for AsH₃, NH₃, PH₃ (Group 15 hydrides)
 - (1) $NH_3 > PH_3 > AsH_3$
 - (2) $PH_3 > NH_3 > AsH_3$
 - (3) $AsH_3 > PH_3 > NH_3$
 - (4) $NH_3 > AsH_3 > PH_3$

Answer (3)

JEE (Main)-2024 : Phase-1 (01-02-2024)-Evening

- **Sol.** As we move down the group, bond length increases, bond strength decreases, hence reducing character increases.
- 9. Highest B.P. is of :
 - (1) Butanol
 - (2) Diethylether
 - (3) Butane
 - (4) Butanal

Answer (1)

Sol. Butanol has highest B.P. due to H-bonding.

Butanol > Butanal > Diethylether > Butane

(Ref: NCERT Pg : 365)

10. Consider the following two statements.

Statement I : π_{2p} bonding molecular orbital has low electron density above and below internuclear axis.

Statement II : π_{2p}^{*} antibonding molecular orbital has only one nodal plane.

- (1) Statement I : True
 (2) Statement I : False
 Statement II : True
 Statement II : False
- (3) Statement I : False (4) Statement I : TrueStatement II : True Statement II : False

Answer (2)

JEE (Main)-2024 : Phase-1 (01-02-2024)-Evening

11. Match the following.

	Column I		Column II
			(Uses)
(i)	CCI ₄	(p)	Refrigerator and A.C.
(ii)	CH ₂ Cl ₂	(q)	Non-biodegradable insecticide
(iii)	Freons	(r)	Fire extinguisher
(iv)	DDT	(s)	Paint remover

- (1) i-(r), ii-(s), iii-(p), iv-(q)
- (2) i-(s), ii-(p), iii-(r), iv-(q)
- (3) i-(p), ii-(r), iii-(q), iv-(s)
- (4) i-(q), ii-(p), iii-(r), iv-(s)

Answer (1)

- Sol. (i) CCl₄ used as fire extinguisher
 - (ii) CH₂Cl₂ used as paint remover
 - (iii) Freons are used in refrigerator and A.C.
 - (iv) DDT is used as non-biodegradable insecticide
- 12. For complexes (I) and (II).

Choose the correct statement.

- I: [CoF₆]³⁻
- II: [Co(NH₃)₆]³⁺
- (1) I: Outer orbital complexII: Inner orbital complex
- (2) I: Outer orbital complex
 - II: Outer orbital complex
- (3) I: Inner orbital complexII: Inner orbital complex
- (4) I: Inner orbital complex

II: Outer orbital complex

Answer (1)

Sol. I: [CoF₆]³⁻

 $Co^{3+} = 4s^0 3d^6$

with F⁻, no pairing will take place

 \Rightarrow Outer orbital complex (sp^3d^2)

II: $[Co(NH_3)_6]^{3+}$ $Co^{3+} = 4s^0 3a^6$

with NH₃, pairing will take place

 \Rightarrow Inner orbit complex (d^2sp^3)

13. While of the following represents meta directing groups?

(2)
$$-CH_3$$
, $-OH$, $-OCH_3$, $-Ph$
(3) $-NO_2$, $-COOH$, $-CHO$, $-C-R$
(4) $-NH_2$, $-C-R$, $-C-NH_2$, $-SO_3H$

Answer (3)

Sol. The correct option which represents meta directing

groups
$$\rightarrow$$
 (3) –NO₂, – COOH, – C – R, –CHO
II
O

-OH, -NH₂, -CH₃ are o/p directing

Therefore, options (1), (2) and (4) are incorrect.

- 14. Statement I: Ni²⁺ with dmg shows red colouration.
 - **Statement II** : Fe²⁺ and Fe³⁺ both are blue coloured.
 - (1) Both statements I and II are correct
 - (2) Both statements I and II are incorrect
 - (3) Statement I is correct and statement II is incorrect
 - (4) Statement I is incorrect and statement II is correct

Answer (3)

Sol.

- Fe^{3+} forms reddish Brown ppt of $Fe(OH)_3$
- $\therefore \quad \text{Statement-I} \Rightarrow \text{Correct, Statement-II} \\ \Rightarrow \text{Incorrect.}$
- 15. Consider the following reactions:

(i)
$$(A' + H_2 \xrightarrow{Pd/BaSO_4} H_3C = C \xrightarrow{C_2H_5} H$$

(ii) But-2-yne $\xrightarrow{H_2}$ B

Identify A and B

- (1) A = Pentyne and (2) A = Pent-3-yne
- B = cis But-2-ene B = trans But-2-ene
- (3) A = Pent-2-yne and (4) A = Pent-2-yne and
 - B = trans But-2-ene B = cis But-2-ene

Answer (3)

- Sol. (i) Pent-2-yne $\xrightarrow[(A)]{Pd/BaSO_4}$ cis pent-2-ene (Lindlar's catalyst)
 - (ii) But-2-yne $\xrightarrow{H_2}_{Na/Liq NH_3}$ trans But-2-ene

[This is Birch reduction]

 Statement-I : SiO₂ and GeO₂ are acidic, SnO and PbO are amphoteric

Statement-II : Allotropes of carbon are formed due to catenation and $d\pi$ -p π bond

- (1) Statement-I and Statement-II both correct
- (2) Statement-I and Statement-II both incorrect
- (3) Statement-I correct and Statement-II both incorrect
- (4) Statement-I and Statement-II both incorrect

Answer (3)

Sol. SiO₂ and GeO₂ are acidic and SnO, PbO are amphoteric

Carbon does not have *d* orbital cannot for $d\pi$ - $d\pi$ bond

JEE (Main)-2024 : Phase-1 (01-02-2024)-Evening

17. **Statement-I**: In p and d block both metals and nonmetals are present.

Statement-II : Electronegativity and ionisation enthalpy of metals is greater than non-metals.

- (1) Both statement-I and II are correct.
- (2) Both statement-I and II are incorrect.
- (3) Statement-I is correct and statement-II is incorrect.
- (4) Statement-I is incorrect and statement-II is correct.

Answer (2)

18.

Sol. In p-block both metals and non-metals are present but in d-block only metals are present.

Match the List-I and List-II

Electronegativity and I.E. of non-metals is greater than that of metals

List-I List-II OH OH (A) (i) CO₂H CHCl₃, NaOH(aq) 0 OH OH (B) (ii) NO2 O_2N Zn 0 NO2 OH (C) (iii) 0 Conc. HNO₃ 0 OH OH (iv) (D) СНО (i) CO₂, NaOH (ii) H (1) $A \rightarrow (i); B \rightarrow (ii); C \rightarrow (iii); D \rightarrow (iv)$ (2) $A \rightarrow (i); B \rightarrow (iv); C \rightarrow (iii); D \rightarrow (ii)$ (3) $A \rightarrow (iv)$; $B \rightarrow (iii)$; $C \rightarrow (ii)$; $D \rightarrow (i)$ (4) $A \rightarrow (iii); B \rightarrow (ii); C \rightarrow (i); D \rightarrow (vi)$ Answer (3)

JEE (Main)-2024 : Phase-1 (01-02-2024)-Evening

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the numerical value decimal notation, correct (in truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A 10 mL hydrocarbon (C_xH_y) on combustion give 40 mL CO₂ and 50 mL H₂O. Calculate the value of x + y.

Answer (14)

Sol.
$$\begin{array}{rrrr} C_{x}H_{y} & + & \left(x+\frac{y}{4}\right)O_{2} & \rightarrow & xCO_{2} & + & \frac{y}{2}H_{2}O_{2}\\ 10 \text{ mL} & & 40 \text{ mL} & 50 \text{ mL} \end{array}$$

10 mL of C_xH_y produces 40 mL of CO₂ means 1 mL of CO₂ will produce 4 mL of CO₂

Value of x = 4

10 mL of C_xH_y produces 50 mL of H₂O

$$\frac{y}{2} = 5 \implies y = 10$$

So hydrocarbon C_xH_y is C₄H₁₀

y = 10

x + y = 14

22. When electron transition from 2nd to 1st orbit takes place, the frequency of photon emitted is 3×10^{15} Hz. The frequency of photon emitted when electron transitions from 3^{rd} to 1^{st} orbit is ____ × 10^{15} Hz. [Nearest Integer]

Answer (4)

Sol.
$$v \propto \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$$

 $\frac{v_{3 \to 1}}{v_{2 \to 1}} = \frac{\left(1 - \frac{1}{9}\right)}{\left(1 - \frac{1}{4}\right)}$
 $v_{3 \to 1} = 3 \times 10^{15} \times \frac{8}{9} \times \frac{4}{3}$
 $= 3.56 \times 10^{15} \text{ Hz}$

Ethylene glycol of x kg is mixed with 18.6 kg of 23. solvent, 24°C depression in freezing point takes place. Calculate value of x.

4

3

(Given K_f = 1.6°C/molal

MW of ethylene glycol = 62 g/mol)

Answer (17)

Sol. $\Delta T_f = i \times k_f \times m$

$$24 = 1 \times 1.6 \times \frac{\text{mass of ethylene glycol in gram}}{62 \times 18.6}$$

mass of ethylene glycol (in g) = $\frac{24 \times 62 \times 18.6}{1.6}$

= 17298 g

 $x = 17.298 \approx 17 \text{ kg}$

24. For a first order reaction

$$A \rightarrow 2B + C$$

following data is given

S. No.	Time(s)	Total pressure (atm)
1	0	0.1
2	115	0.28

If the value of rate constant is x sec⁻¹, the value of 100x is

Answer (2)

- $A \longrightarrow 2B + C$ Sol. t = 0 0.1 t = 115 s 0.1 - x2x х 0.1 - x + 2x + x = 0.28 $\Rightarrow 0.1 + 2x = 0.28$ x = 0.09 $\ln \frac{0.1}{(0.1-x)} = kt$ $\Rightarrow \ln\left(\frac{0.1}{0.01}\right) = k \times 115$ $\Rightarrow \frac{\ln 10}{115} = k$ \Rightarrow k = $\frac{2.303}{115}$ \Rightarrow k = 0.02 ⇒ 100k = 2
- 25. Consider the following reaction :

Product mixture consist of how many isomeric products?

Answer (6)

Sol.

Hence product mixture consist of four structural isomers with two enantiomeric pairs. So the total isomeric products are 6.

JEE (Main)-2024 : Phase-1 (01-02-2024)-Evening

26. Find out charge (in C) required to electrolysis of 1 mole of H_2O to produce O_2 on one of the electrodes

(F = 96500 C)

Answer (193000)

Sol. $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Charge required = $2 \times 96500 = 193000$

27. Number of non-cyclic tripeptides formed by using3 amino acids without repeating them is

Answer (6)

Sol. There are 3 possible first amino acids. Then there are 2 possible second amino acids.

After 2 amino acids are fixed there is only 1 option left for 3rd amino acid.

Total tripeptide = $3 \times 2 \times 1 = 6$

28. In an equilibrium reaction

A ===⇒B at 300 K, the

Equilibrium constant K value is 10. Then ΔG° is $-x \times 10^{-1}$ kJ. Find x.

Answer (57)

Sol. $\Delta G^{\circ} = -RT \ln K_{eq}$ $\Delta G^{\circ} = -2.303 RT \log K_{eq}$ $K_{eq} = 10$ $R = 8.314 J/K^{-} mol$ T = 300 K $\Delta G^{\circ} = -2.303 \times 8.314 \times 300 \log 10$ = -5744.14 J = -5.744 kJ $= -57.44 \times 10^{-1} kJ$ $x \approx 57$ 29.