JEE Main 1 February 2024 Shift 1 Answer Key Physics

Q.1: Determine the lowest energy of a photon emitted in the Balmer Series of a hydrogen atom.
A.1: 1.88 eV
Q.2: De Broglie wavelength of a proton is λ and that of an α particle is 2λ. Find the ratio of the velocity of the proton to that of α particle.
A.1: 1:8
Q.3: What are the dimensions of an angular impulse?

A.3: $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$

Q.4: A vernier calliper has 10 main scale divisions coinciding with 11 vernier scale divisions equals 5 mm . What is the least count of the device?

A.4: $5 / 11 \mathrm{~mm}$

Q.5: On increasing temperature, the elasticity of a material will:
i. Increase
ii. Decrease
iii. Remain constant
iv. May increase or decrease

A.5: Decreases

Q.6: 2 moles of a monoatomic gas and 6 moles of a diatomic gas are mixed. Find the molarspecific heat for a constant volume of the mixture if R represents the universal gas constant.
A.6: 2.25 R

CollegeDekho

Q.7: A gas undergoes a thermodynamic process from state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)$ to state $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$. If for the given process $\mathrm{PV}^{3 / 2}=$ constant, find the work done by the gas.

A.7: $2\left(\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}\right)$

Q.8: Two particles, each of mass 2 kg are placed in the $\mathrm{x}-\mathrm{y}$ plane such that m_{x} is 4 m on the negative x-axis and m_{y} is 4 m on the positive y -axis. If the distance of the centre of mass from the origin is $[(4 \sqrt{2}) / x]$, find x.

A.8: 2

Q.9: If a bullet of mass $10^{-2} \mathrm{~kg}$ and velocity $200 \mathrm{~m} / \mathrm{s}$ gets embedded inside the bob of mass 1 kg of a simple pendulum, then what will be the maximum height that the system rises by in cm ?
A.9: 20 cm
Q.10: The length of a seconds pendulum, if it is placed at height $2 R$ (where $R=$ the radius of the earth) from the surface of the earth, is $\left[10 / x \pi^{2}\right] m$. Find x.
A.10: 9

