JEE-Main-01-02-2024 (Memory Based) [MORNING SHIFT]

Chemistry

Question: Find out total possible optical isomers of 2-chlorobutane.
Options:
(a) 2
(b) 3
(c) 4
(d) 6

Answer: (a)
Solution: The number of optical isomers possible for a compound is r where $\mathrm{n}=$ number of asymetric carbon atoms.
As $2^{\mathrm{n}}=1$ for 2-ehlorobutane,
$2^{\mathrm{n}}=2^{1}=2$.
Hence, it has two optical isomers.
Question: The total number of deactivating groups among the following is : - $\mathrm{CN},-\mathrm{NH}-\mathrm{CO}-$
$\mathrm{CH}_{3},-\mathrm{CO}-\mathrm{CH}_{3},-\mathrm{NH}-\mathrm{CH}_{3}$
Options:
(a) 1
(b) 2
(c) 3
(d) 4

Answer: (b)
Solution:

2) Moderately E.D.G. (O/P-directing)
2) Moderately EWG. (Meta- directing)

$-\mathrm{O}-\mathrm{CH}=\mathrm{CH}_{2},-\mathrm{NH}-\mathrm{CH}-\mathrm{CH}_{2}$
3) Weakly E.D.G. (O/P-directing)

3) Weakly EWG. (O/P-directing)
-F
$-\mathrm{Cr}-\mathrm{NO}$
$-\mathrm{Br}$

Question: In Kjeldahl's estimation of nitrogen, CuSO_{4} acts are :
Options:
(a) Oxidising agent
(b) Reducing agent
(c) Catalyst
(d) Reagent

Answer: (c)

Solution:

Taken and that left after the reaction gives the amount of acid reacted with ammonia.
Organic compound $+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \xrightarrow{2 \mathrm{NaOH}} \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Question: Which of the following is most likely attacked by electroph Options:
(a)

(b)

(c)

(d)

Answer: (c)

Question: Statement I: S_{8} disproportionates into $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{S}_{2}{ }^{-}$in alkaline medium
Statement II : CIO_{4}^{-}undergoes disproportionation in acidic medium

Options:

(a) Statement I is correct but Statement II is incorrect
(b) Statement I is incorrect but Statement II is correct
(c) Both Statement I and Statement II are correct
(d) Both Statement I and Statement II are incorrect

Answer: (c)
Solution:
Phosphorous, sulphur and chlorine undergo dis proportionation in the alkaline medium as shown below:
$\stackrel{0}{\mathrm{P}_{4}(\mathrm{~s})}+3 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \stackrel{-3}{\mathrm{PH}_{3}(\mathrm{~g})}+3 \stackrel{+1}{\mathrm{H}_{2} \mathrm{PO}_{2}^{-}}$ (aq)
(8.46)
$\stackrel{0}{\mathrm{~S}_{8}(\mathrm{~s})}+12 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 4 \stackrel{-2}{2-}_{\mathrm{S}^{2-}}(\mathrm{aq})+2{\stackrel{+2}{\mathrm{~S}_{2}} \mathrm{O}_{3}^{2-}(\mathrm{aq})}^{(1)}$ $+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(8.47)

Question: Match the following and select the correct option.

List I	List II
(a) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(i) $\mathrm{t}_{2 \mathrm{~g}}{ }^{2} \mathrm{eg}^{0}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(ii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{0}$
(c) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(iii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}$
(d) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(iv) $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{eg}^{2}$

Options:

(a) a-ii, b-iii, c - iv, d-i
(b) a-iii, b-iv, c-i, d-ii
(c) a-iv, b-ii, c-iii, d-i
(d) a-ii, b-iv, c - i, d - iii

Answer: (a)

Question: Statement I: PH_{3} will have lower boiling point than NH_{3}.
Statement II: There are strong van der Waals forces in NH_{3} and strong hydrogen bonding in PH_{3}

Options:

(a) Both Statement I and Statement II are correct
(b) Both Statement I and Statement II are incorrect
(c) Statement I is correct, but Statement II is incorrect
(d) Statement I is incorrect, but Statement II is correct

Answer: (c)

Vedantu

Solution: NH_{3} intermolecular hydrogen bonding leads to molecular association so large amount of energy is required to break these hydrogen bonds whereas in PH_{3} there is no hydrogen bonding. Hence NH_{3} has high boiling point than PH_{3}

Question: Which of the following is the correct plot between $\boldsymbol{\lambda}$ (de-Broglie wavelength) and p (momentum) ?

Options:

(a)

(b)

(c)

(d)

Answer: (a)
Solution: Graph between λ and p is a rectangular hyperbola
Question: What is the pH of $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{NH}_{4}^{+}$? $\left(\mathrm{At} 25^{\circ} \mathrm{C}\right)$
Given: K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}, \mathrm{~Kb}$ of $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{5}$
Options:
(a) 7
(b) 9
(c) 8.9
(d) 7.8

Answer: (a)

Solution: $\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$

Question: Which of the following is correct for adiabatic free expansion against vacuum ? Options:
(a) $\mathrm{q}=0, \Delta \mathrm{U}=0, \mathrm{w}=0$
(b) $\mathrm{q} \neq 0, \mathrm{w}=0, \Delta \mathrm{U}=0$
(c) $\mathrm{q}=0, \Delta \mathrm{u} \neq 0, \mathrm{w}=0$
(d) $\mathrm{q}=0, \Delta \cup \neq 0, \mathrm{w} \neq 0$,

Answer: (a)

Solution: Free expansion of an ideal gases under adiabatic condition is $\mathrm{q}=0, \Delta \mathrm{~T}=0$ and $\mathrm{w}=$ 0 .

Question: Which of the following have trigonal bipyramidal shape ?
$\mathrm{PF}_{5}, \mathrm{PBr}_{5},\left[\mathrm{PtCl}_{4}\right]^{-}, \mathrm{SF}_{6}, \mathrm{BF}_{3}, \mathrm{BrF}_{5}, \mathrm{PCl}_{5},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$

Options:

(a) $\mathrm{PF}_{5}, \mathrm{PBr}_{5}, \mathrm{PCl}_{5},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ only
(b) $\mathrm{PF}_{5}, \mathrm{PBr}_{5}, \mathrm{PCl}_{5}, \mathrm{BrF}_{5}$ only
(c) $\mathrm{PF}_{5}, \mathrm{PCl}_{5},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ only
(d) $\mathrm{PF}_{5}, \mathrm{PBr}_{5}, \mathrm{BrF}_{5}, \mathrm{PCl}_{5},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ only

Answer: (a)

Solution:

Question: Complementary stand of DNA ATGCTTCA is :
Options:
(a) TACGAAGA
(b) TACGAAGT
(c) TAGCAACA
(d) TAGCTACT

Answer: (b)
Solution: A always pairs with T with two hydrogen bonds and G always pairs with C with three hydrogen bonds.

Question: We are given with 3 NaCl samples and their Van't Hoff factors

Sample	Van't Hoff factor
Sample $-1(0.1$ $\mathrm{M})$	i_{1}
Sample -2 $(0.01 \mathrm{M})$	i_{2}
Sample -3 $(0.001 \mathrm{M})$	i_{3}

Options:

(a) $\mathrm{I}_{1}=\mathrm{i}_{2}=\mathrm{i}_{3}$
(b) $\mathrm{I}_{1}>\mathrm{i}_{2}>\mathrm{i}_{3}$
(c) $I_{3}>i_{2}>i_{1}$
(d) $\mathrm{I}_{1}>\mathrm{i}_{3}>\mathrm{i}_{2}$

Answer: (a)
Solution: $\mathrm{I}_{1}=\mathrm{i}_{2}=\mathrm{i}_{3}$

Question: How many oxides are amphoteric in nature?
$\mathrm{SnO}_{2}, \mathrm{PbO}_{2}, \mathrm{SiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{CO}_{2} \mathrm{CO}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$
Answer: 3

Question: We are given with following cell reaction :
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
$\mathrm{P}_{\mathrm{H} 2}=2 \mathrm{~atm}$
$\left[\mathrm{H}^{+}\right]=1 \mathrm{M}$
(2.30RT/F=0.06)

If $\mathrm{E}_{\text {cell }}$ of the reaction is given by $-\mathrm{x} \times 10^{-3} \mathrm{~V}$. Find out x .
Answer: 9

Solution:

Anode: $\mathrm{H}_{2}(1 \mathrm{~atm}) \rightarrow 2 \mathrm{H}^{\oplus}(\mathrm{x} \mathrm{M})+2 \mathrm{e}^{-}$
Cathode: $2 \mathrm{H}^{\oplus}(1 \mathrm{M})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2},(1 \mathrm{~atm})$

$$
=\mathrm{E}_{\mathrm{H}^{+} / \frac{1}{2} \mathrm{H}_{2}}^{\circ}+\frac{0.059}{n} \log \frac{\left[\mathrm{H}^{+}\right]}{\left(p_{\mathrm{H}_{2}}\right)^{1 / 2}}
$$

