

JEE-Main-01-02-2024 (Memory Based) [MORNING SHIFT]

Mathematics

Question: Five people are distributed in four identical rooms. A room can also contain zero people. Find the number of ways to distribute them.

Options:

- (a) 47
- (b) 53
- (c)43
- (d) 51

Answer: (d) Solution:

Question: 3, a, b, c are in AP, 3, a-1, b+1, c+9 are in GP, then AM of a, b, c is

Answer: 11.00

Solution:

Question: If 3,7,11,...,403 = A.P.₁ and 2,5,8,...,401 = $A.P._2$. Find the sum of common terms of A.P.₁ and A.P.₂

Options:

- (a) 3366
- (b) 6699
- (c) 9999
- (d) 6666

Answer: (b)

Solution:

Question: The value of integral $\int_{0}^{\frac{\pi}{4}} \frac{x \, dx}{\cos^4 2x + \sin^4 2x} =$

Options:

(a)
$$\frac{\pi^2}{16\sqrt{2}}$$

(b)
$$\frac{\pi^2}{64}$$

(c)
$$\frac{\pi^2}{32}$$

$$(d) \frac{\pi^2}{8\sqrt{2}}$$

Answer: (a) Solution:

$$I = \frac{\pi^2}{16\sqrt{2}}$$

Question: y = y(x) solution of equation

$$\frac{dy}{dx} = 2x(x+y)^3 - x(x+y) - 1, y(0) = 1\left(\frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right)\right)^2 = ?$$

Options:

- (a) $\log \frac{4}{4+\sqrt{e}}$
- (b) $\frac{2}{1+\sqrt{6}}$
- (c) $\frac{3}{3-\sqrt{e}}$
- (d) $\frac{1}{2-\sqrt{e}}$

Answer: (d) **Solution:**

Question: If the system of equations 2x+3y-z=5; $x+\alpha y+3z=-4$; $3x-y+\beta z=7$ have many solutions, then $13\alpha\beta$ is equal to

Options:

- (a) 1110
- (b) 1120
- (c) 1210
- (d) 1220

Answer: (b)

Solution:

Question: A bag contains 8 balls, whose colours are either write or black back. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is:

Options:

- (a) $\frac{1}{5}$
- (b) $\frac{1}{7}$ (c) $\frac{2}{5}$ (d) $\frac{2}{7}$

Answer: (d) **Solution:**

Question: For $0 < \theta < \frac{\pi}{2}$, if the eccentricity of hyperbola $x^2 - y^2 \csc^2 \theta = 5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \csc^2 \theta + y^2 = 5$, then the value of θ is:

Options:

- (a) $\frac{\pi}{6}$
- (b) $\frac{5\pi}{12}$
- (c) $\frac{\pi}{4}$
- (d) $\frac{\pi}{3}$

Answer: (d) Solution:

Question: Let $s = \left\{ x \in \mathbb{R} : \left(\sqrt{3} + \sqrt{2} \right)^x + \left(\sqrt{3} - \sqrt{2} \right)^x = 10 \right\}$. Number of elements in s is:

Options:

- (a) 2
- (b) 0
- (c) 1
- (d) 4

Answer: (a) Solution:

Question: If $A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $C = ABA^T$ and $X = AC^2A^T$ then |X| is equal to

Options:

- (a) 729
- (b) 283
- (c) 27
- (d) 23

Answer: (a) Solution:

Question: $\overline{a} = -5\hat{i} + \hat{j} - 3\hat{k}$, $\overline{b} = \hat{i} + 2\hat{j} - 4\hat{k}$, $\overline{c} = \left[\left(\overline{a} \times \overline{b} \right) \times \hat{j} \times \hat{j} \right] \times \hat{j}$ then $\overline{c} \cdot \left(-\hat{i} + \hat{j} + \hat{k} \right)$

Answer: -12.00

Solution:

Question: $\frac{x-\lambda}{-2} = \frac{y-2}{1} = \frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1} = \frac{y-1}{-2} = \frac{z-2}{1}$. If the shortest distance between

the above two lines is 1 then sum of possible values of λ

Options:

(a) 0

(b)
$$2\sqrt{3}$$

(c)
$$3\sqrt{3}$$

(d)
$$-2\sqrt{3}$$

Answer: (b) Solution:

Question:
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1+e^{\sin x})(1+\sin^4 x)} = a\pi + b\log(3+2\sqrt{2}), \text{ then find } a+b.$$

Options:

Answer: (d)

Solution:

Question:
$$x = x(t)$$
 solution of $(t+1)dx = \left[ex + (t+1)^4\right]dx$, $x(0) = 2$ then $x(1) = x(t)$

Answer: 12.00

Solution:

Question: Given:
$$5f(x) + 4f(\frac{1}{x}) = x^2 - 4$$
 & $y = 9f(x) \cdot x^2$. If y is strictly increasing, then

find interval of x.

Options:

(a)
$$\left(-\infty, -\frac{1}{\sqrt{5}}\right] \cup \left(\frac{1}{\sqrt{3}}, 0\right)$$

(b)
$$\left(-\frac{1}{\sqrt{5}},0\right) \cup \left(0,\frac{1}{\sqrt{5}}\right)$$

(c)
$$\left(0, \frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$$

(d)
$$\left(-\sqrt{\frac{2}{5}},0\right) \cup \left(\sqrt{\frac{2}{5}},\infty\right)$$

Answer: (d)

Solution: