Vedantu

JEE-Main-01-02-2024 (Memory Based)

 [EVENING SHIFT]
Mathematics

Question: Let α and β the roots of equation $p x^{2}+q x-r=0$, where $P \neq 0$. If p, q, r be the consecutive term of non constant G.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^{2}$ is:
Answer: $\frac{80}{9}$
Solution:
Question: If the mirror image of the point $\mathrm{P}(3,4,9)$ in the line $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is (α, β, γ) then find $(\alpha+\beta+\gamma)$ is
Answer: 108.00

Solution:

Question: The number of solutions of the equation
$4 \sin ^{2} x-4 \cos ^{3} x+9-4 \cos x=0, x \in[-2 \pi, 2 \pi]$ is:

Answer: 0.00

Solution:

Question: If the domain of the function $f(x)=\frac{\sqrt{x^{2}-25}}{\left(\sqrt{4-x^{2}}\right)}+\log \left(x^{2}+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$ then $\alpha^{2}+\beta^{2}$ is equal to

Answer: 50.00

Solution:

Question: Let the system of equation $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solution. Then $\lambda+2 \mu$ is equal to
Answer: 17.00

Solution:

Question: The value of $\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{\frac{1}{3}} d x$

Options:

Vedantu

(a) -1
(b) 1
(c) 0
(d) 2

Answer: (c)

Solution:

Question: The probability that Ajay will not go to office is $\frac{1}{5}$ and probability that Ajay and Vijay will not go to the office is $\frac{2}{7}$, if their visits of office is independent of each other, then find the probability that Ajay will go to the office, but Vijay will not go, is
Options:
(a) $\frac{12}{28}$
(b) $\frac{13}{35}$
(c) $\frac{18}{35}$
(d) $\frac{24}{35}$

Answer: (c)
Solution:
Question: $\int_{0}^{\frac{\pi}{3}} \cos ^{4} x d x$ is equal to $a \pi+b \sqrt{3}$, then $a^{2}+b$ is equal to:

Options:

(a) $\frac{1}{2}$
(b) $\frac{1}{8}$
(c) $\frac{1}{4}$
(d) 1

Answer: (b)

Solution:

Question: Let m and n be the coefficient of $7^{\text {th }}$ and $13^{\text {th }}$ term in expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{5}}}\right)^{18}$ then $\left(\frac{m}{n}\right)^{\frac{1}{3}}$

Options:

(a) $\frac{1}{4}$
(b) $\frac{4}{7}$
(c) $\frac{1}{9}$
(d) $\frac{4}{9}$

Answer: (d)
Solution:

Question: The minimum value of $\left|z+\frac{3+4 i}{2}\right| ;|z| \leq 1$ is
Options:
(a) $\frac{3}{2}$
(b) $\frac{5}{2}$
(c) 3
(d) 5

Answer: (a)
Solution:

Question: Let vertex $\mathrm{A}(2,3,1), \mathrm{B}(3,2,-1), \mathrm{C}(-2,1,3)$. If AD is angle bisector of angle A , then projection of $\overrightarrow{A D}$ on $\overrightarrow{A C}$ is equal to

Options:

(a) $\frac{\sqrt{3}}{2}$
(b) $\sqrt{\frac{2}{3}}$
(c) $\sqrt{\frac{3}{2}}$
(d) $\frac{2}{\sqrt{3}}$

Answer: (b)

Solution:

Question: If the system of equations:
$x+2 y+3 z=5$
$3 x+3 y+z=9$
$x+4 y+\lambda z=\mu$
have infinitely many solutions then the value of $3 \lambda+\mu$ equals to
Options:
(a) 17
(b) 21
(c) 43
(d) 34

Answer: (d)

Solution:

Question: $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}$ and $x(1)=1$, then $5 x(2)$ is equal to \qquad .
Answer: 5.00

Solution:

Question: If $y=\frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^{5} x-5 \cos ^{3} x\right)$ then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ equals to \qquad -
Answer: 105.00

Solution:

Question: Let S_{n} be the sum of first n terms of an A.P. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is 15:7, then $S_{15}-S_{5}$ is equal to
Answer: 790.00

Solution:

Question: There are 20 lines numbered as $1,2,3, \ldots, 20$. And the odd numbered lines intersect at a point and all the even numbered lines are parallel. Find the maximum number of point of intersections.
Answer: 101.00

Solution:

Question: Let the focus of the mid point of the chords of the circle $x^{2}+(y-1)^{2}=1$ drawn from the origin intersects the line $x+y=1$ at P and Q . Then the length of PQ is
Answer: $\frac{1}{\sqrt{2}}$
Solution:

