General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words $[$ dry \rightarrow arid \rightarrow parched $]$ is analogous to [diet \rightarrow fast \rightarrow Which one of the given options is appropriate to fill the blank?
(A)	starve
(B)	reject
(C)	feast
(D)	deny
Q.2	If two distinct non-zero real variables x and y are such that $(x+y)$ is proportional to $(x-y)$ then the value of $\frac{x}{y}$
(C)	depends only on y and not on x

Q. 3	Consider the following sample of numbers: $9,18,11,14,15,17,10,69,11,13$ The median of the sample is
(A)	13.5
(B)	14
(C)	11
(D)	18.7
Q. 4	The number of coins of ₹ 1 , ₹ 5 , and ₹ 10 denominations that a person has are in the ratio 5:3:13. Of the total amount, the percentage of money in ₹ 5 coins is
(A)	21\%
(B)	$14 \frac{2}{7} \%$
(C)	10\%
(D)	30\%

Q.5	For positive non-zero real variables p and q, if $\log \left(p^{2}+q^{2}\right)=\log p+\log q+2 \log 3$, then, the value of $\frac{p^{4}+q^{4}}{p^{2} q^{2}}$ is
(A)	79
(B)	81
(C)	9
(D)	83

Q. 6 - Q. 10 Carry TWO marks Each

Q. 7	A rectangular paper sheet of dimensions $54 \mathrm{~cm} \times 4 \mathrm{~cm}$ is taken. The two longer edges of the sheet are joined together to create a cylindrical tube. A cube whose surface area is equal to the area of the sheet is also taken. Then, the ratio of the volume of the cylindrical tube to the volume of the cube is
(A)	$1 / \pi$
(B)	$2 / \pi$
(C)	$3 / \pi$
(D)	$4 / \pi$

IISC Bengaluru

Q.9	A rectangular paper of $20 \mathrm{~cm} \times 8 \mathrm{~cm}$ is folded 3 times. Each fold is made along the line of symmetry, which is perpendicular to its long edge. The perimeter of the final folded sheet (in cm) is
(A)	18
(B)	24
(C)	20
(D)	21
Q.10	The least number of squares to be added in the figure to make AB a line of symmetry is
(D)	7
(A)	6
(B)	4

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	The value of the contour integral $\oint \frac{d z}{2 z-z^{2}}$ along the circle $\|z\|=1$, oriented in the counterclockwise sense is
(A)	πi
(B)	0
(C)	$2 \pi i$
(D)	$4 \pi i$
Q.12	The tangent plane to the surface $x^{2}+y^{2}+z=9$ at the point $(1,2,4)$ is
(A)	$2 x+4 y+z=14$
(B)	$4 x+2 y+z=12$
(D)	$x+4 y+2 z=17$
	$4 x+y+2 z=14$

dISC Bengaluru

Q.13	The value of the line integral $\oint x^{2} d x+2 x d y$ along the ellipse $4 x^{2}+y^{2}=4$ oriented in the counterclockwise sense is
(A)	π
(B)	2π
(C)	4π
(D)	8π
Q.14	The system of linear equations $x+2 y+3 z=4$ $2 x-y-2 z=a^{2}$ (D) (B) $-x-7 y-11 z=a$ has a solution if the values of a are -1 and 5 (C) 3 -5 and 1
	(A 4

Q.15	A ship with a standard right-handed coordinate system has positive x, y and z axes respectively pointing towards bow, starboard and down as shown in the figure. If the ship takes a starboard turn, then the drift angle, sway velocity and the heel angle of the ship for a steady yaw rate respectively are
(A)	nesitive, negative and positive
(B)	negative, positive and positive
(C)	positive, negative and negative
(D)	

Q.16	A ship with controls fixed, is modeled as a two degrees of freedom system. For the linear maneuvering equations of motion for coupled sway and yaw, if the derived eigenvalues are real and negative, then the ship must possess
(A)	positional motion stability
(B)	directional stability
(C)	straight line stability
(D)	both directional and positional motion stabilities
Q.17	Which one of the following cooling systems is used in large marine diesel engines?
(D)	
(A)	Thermosyphon
(B)	Forced coolant circulation
(Daporative	

Q.18	Which one of the following reduces the ratio of vibratory response amplitude to the forcing amplitude, in large stationary engine shaft design?
(A)	Reduction in axial vibrations of the rotating shaft
(B)	Increase in the fundamental frequency of the rotating shaft
(C)	Decrease in the rotational speed of shaft
(D)	Operating the shaft at a speed exceeding the critical speed

Q. 19	The GZ curve for a stable ship is shown in the figure, where P is a point of inflection on the curve. Match the labels in Column 1 with the corresponding descriptions in Column 2.
(A)	R - I; Q - II; ST - III; P - IV
(B)	P - I; Q - II; ST - III; R - IV
(C)	ST - I; Q - II; R - III; P - IV
(D)	R - I; Q - II; P - III; ST - IV

dISC Bengaluru

Q.20	Consider an initially perfectly straight elastic column with pinned supports at both ends. If E is the Young's modulus of the material, L is the length of the column between the supports, and I is the least moment of inertia of the constant cross- sectional area of the column, then the Euler load is given by
(A)	$\frac{\pi^{2} E I}{L^{2}}$
(B)	$\frac{\pi^{2} E I}{4 L^{2}}$
(C)	$\frac{\pi^{2} E I}{\sqrt{2} L^{2}}$
(D)	$\frac{2 \pi^{2} E I}{L^{2}}$
Q.21	For a plane strain problem in the $x-y$ plane, it is necessary that
(B)	normal strain ε_{z} is zero
(C)	both the normal stresses σ_{x} and σ_{y} are zero
(D)	
shear strain $\gamma_{x y}$ is equal to $\frac{\left(\varepsilon_{x}-\varepsilon_{y}\right)}{2}$	

Q.22	How many independent material constants in solids are required to define isotropic materials?
(A)	2
(B)	3
(C)	9
(D)	21

Q. 23	Which one of the following is the mass conservation equation?
(A)	$\frac{D}{D t} \iiint_{V} \rho \vec{v} . \hat{n} d V=0$
(B)	$\frac{\partial}{\partial t} \iiint_{V} \rho d V=0$
(C)	$-\frac{\partial}{\partial t} \iiint_{V} \rho d V=\iint_{S} \rho \vec{v} . \hat{n} d s$
(D)	$-\frac{D}{D t} \iiint_{V} \rho d V=\iint_{S} \rho \vec{v} . \hat{n} d s$

Q. 24	Identify the type of flow from the time series plots of instantaneous fluid velocity (u) at a point.
(A)	I - unsteady turbulent flow; II - steady turbulent flow; III - steady laminar flow; IV - unsteady laminar flow
(B)	I - steady turbulent flow; II - unsteady turbulent flow; III - unsteady laminar flow; IV - steady laminar flow
(C)	I - steady turbulent flow; II - unsteady turbulent flow; III - steady laminar flow; IV - unsteady laminar flow
(D)	I - steady turbulent flow; II - unsteady laminar flow; III - unsteady turbulent flow; IV - steady laminar flow

Q.25	Which of the following hull distortion(s) is/are resisted by a ship's transverse bulkhead?
(A)	Racking
(B)	Torsion
(C)	Longitudinal bending
(D)	Horizontal bending
Q.26	Which of the following boiler(s) is/are NOT used in a nuclear propulsion system for ships?
(D)	Boiled water reactor boiler
(A)	Water tube boiler
(B)	Cochran boiler
Double evaporation boiler	

Q.27	Which of the following statement(s) is/are correct about strip theory?
(A)	It can be used to calculate the surge added mass
(B)	It is a two-dimensional theory
(C)	It can be used to calculate the pitch added mass
(D)	It can be used to calculate the coupled sway, roll and yaw added mass
Q.28	Consider an ideal Rankine cycle as shown in the figure, where T and S represent the temperature and entropy respectively. The overall efficiency of the cycle can be improved by
(D)	superheating the steam
(A)	increasing the pressure at which heat is added
(B)	decreasing the pressure at which heat is rejected

Q. 29	Which of the following statement(s) is/are correct for a thermodynamic closed system?
(A)	The entropy change is positive for a reversible adiabatic process
(B)	The entropy change is positive for a reversible cycle
(C)	The entropy change is positive for a reversible isothermal heat addition process
(D)	The entropy change is negative for a reversible isothermal heat rejection process
Q. 30	The arc length of the one arch of the cycloid given by $x=t-\sin t$ and $y=1-\cos t$ is \qquad
Q. 31	A 10 m long pipe with inlet and outlet diameters of 40 cm and 20 cm respectively, is carrying an incompressible fluid with a flow rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. The ratio of the velocity at the outlet to that at the inlet is \qquad (rounded off to one decimal place)

Q. 32	An 80 m long barge with rectangular cross-section of 12 m beam and 4 m draft floats at even keel. The transverse metacenter (KM) above the keel is \qquad m.
Q. 33	A 100 m long ship has a cruising speed of 25 knots. A geometrically similar model of 4 m length is used for resistance prediction in a towing tank. The corresponding speed of the model is \qquad knots.
Q. 34	A cube-shaped pontoon with 200 tonnes of mass placed on it, floats with a freeboard of 1 m in fresh water. When the mass is removed, the pontoon floats with a freeboard of 3 m . The length of the pontoon is \qquad m (rounded off to two decimal places).

Q. 35	Consider a fluid between two horizontal parallel flat plates 5 mm apart as shown in the figure. The top plate of dimensions $0.5 \mathrm{~m} \times 2 \mathrm{~m}$ is towed with an applied horizontal force F of 0.01 N , while the infinitely long bottom plate is kept fixed. The horizontal velocity profile between the plates is assumed to be linear. If the dynamic viscosity (μ) of the fluid is $0.89 \times 10^{-3} \mathrm{~N}$-s $/ \mathrm{m}^{2}$, then the towing velocity of the top plate is m / s (rounded off to three decimal places).

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	Consider the matrices $M=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ and $N=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 0\end{array}\right)$. Which one of the			
following is true?		\quad	(A)	M is not diagonalizable but N is diagonalizable
:---	:---			
(B)	Both M and N are not diagonalizable			
(C)	Both M and N are diagonalizable			
(D)	M is diagonalizable but N is not diagonalizable			

Q.37	A simply supported beam is subjected to a concentrated moment M at the mid span as shown in the figure. The magnitude of the bending moment at a distance of $\mathrm{L} / 4$ from the left support A is equal to
(A)	M
(B)	$\frac{\mathrm{ML}}{4}$
(C)	$\frac{\mathrm{M}}{4}$
(D)	$\frac{\mathrm{M}}{2}$

| Q. 38 | Consider a two-dimensional ship section as shown in the figure. About the point O,
 let the sway added mass components be a_{22} and a_{24} and roll added moment of
 inertia be a_{44}. The clockwise roll angle is considered positive. The roll added mass
 due to roll, about P which is at a distance z_{P} above O is given by |
| :--- | :--- | :--- |
| | |
| (A) | $a_{44}-a_{24} z_{P}$ |
| (B) | $a_{44}-a_{22} z_{P}-a_{24} z_{P}$ |
| (C) | $a_{44}-a_{22} z_{P}+a_{24} z_{P}$ |
| (D) | $a_{22}+a_{24}+a_{44}$ |

Q.39	A ship with a displacement of 10000 tonnes has the center of gravity at 4 m above the keel and 1.5 m forward of midship. If 2000 tonnes of cargo is placed at 10 m above the keel and 1.5 m aft of midship, then the new position of the center of gravity is
(A)	5 m above the keel and 1 m aft of midship
(B)	6 m above the keel and 1 m forward of midship
(C)	6 m above the keel and 1 m aft of midship
(D)	5 m above the keel and 1 m forward of midship
Q.40	The waterplane area of a ship floating in sea water is 2000 m^{2}. The density of seawater is $1025 \mathrm{~kg} / \mathrm{m}^{3}$. If a mass of 246 tonnes is added to the ship, then the TPC (Tonnes Per Centimeter immersion) and increase in draft (in cm) respectively are
(C)	20.50 and 24
(D)	10.25 and 24.6
(B)	20.50 and 12
(D 12.3	

Q. 41	The open water characteristics of a propeller is shown in the figure. Match the labels in Column 1 with the corresponding descriptions in Column 2.
(A)	O-I; P - II; Q - III; R - IV
(B)	O - I; Q - II; P - III; R - IV
(C)	O-I; R - II; Q - III; P - IV
(D)	P - I; Q - II; O-III; R - IV

Q. 42	Which one of the following $p-h$ plots represents the ideal vapour compression cycle with intercooling? Here, p and h denote pressure and specific enthalpy respectively.
(A)	
(B)	
(C)	
(D)	

rer 14

Q. 43	A steel deck plate of a tanker is supported by two longitudinal stiffeners as shown in the figure. The width of the plate is a and its length is 5 times the width. Assume that the long edge is simply supported, and the short edge is free. The plate is loaded by a distributed pressure, $p=p_{0} \sin \left(\frac{\pi y}{a}\right)$, where p_{0} is the pressure at $y=a / 2$. The flexural rigidity of the plate is D. The plate equation is given by
(A)	$\frac{\partial^{4} w}{\partial y^{4}}=\frac{p_{0}}{D} \sin \left(\frac{\pi y}{a}\right)$
(B)	$\frac{\partial^{2} w}{\partial x^{2}}=\frac{p_{0}}{D} \sin \left(\frac{\pi y}{a}\right)$
(C)	$\frac{\partial^{2} w}{\partial y^{2}}=\frac{p_{0}}{D} \sin \left(\frac{\pi y}{a}\right)$
(D)	$\frac{\partial^{4} w}{\partial x^{4}}=\frac{p_{0}}{D} \sin \left(\frac{\pi y}{a}\right)$

Q.44	Which one of the following psychrometric processes is represented by the line $1-2$ in the figure?
(A)	Cooling and humidification
(B)	Cooling and dehumidification
(C)	Heating and humidification
(D)	Heating and dehumidification

Q.45	Consider model testing where λ is the prototype to model length scale ratio. Let v_{p} and v_{m} denote the corresponding fluid kinematic viscosities. If Froude and Reynolds similarities are maintained between the prototype and model, then which one of the following is correct?
(A)	$v_{m}=\lambda^{-3 / 2} v_{p}$
(B)	$v_{m}=\lambda^{3 / 2} v_{p}$
(C)	$v_{m}=\lambda^{2 / 3} v_{p}$
(D)	$v_{m}=\lambda^{-2 / 3} v_{p}$

IISC Bengaluru

Q. 46	A uniform flow, a point source of strength $+\sigma$ at $(a, 0)$ and a point sink of strength $-\sigma$ at $(-a, 0)$ are shown in the figure. The velocity potential ϕ resulting from the superposition of these flow fields is given by
(A)	$\phi=-U_{\infty} x+\frac{\sigma}{2 \pi} \ln \sqrt{(x+a)^{2}+y^{2}}-\frac{\sigma}{2 \pi} \ln \sqrt{(x-a)^{2}+y^{2}}$
(B)	$\phi=-U_{\infty} x+\frac{\sigma}{2 \pi} \ln \sqrt{(x-a)^{2}+y^{2}}-\frac{\sigma}{2 \pi} \ln \sqrt{(x+a)^{2}+y^{2}}$
(C)	$\phi=U_{\infty} x+\frac{\sigma}{2 \pi} \ln \sqrt{(x-a)^{2}+y^{2}}-\frac{\sigma}{2 \pi} \ln \sqrt{(x+a)^{2}+y^{2}}$
(D)	$\phi=U_{\infty} x+\frac{\sigma}{2 \pi} \ln \sqrt{(x+a)^{2}+y^{2}}-\frac{\sigma}{2 \pi} \ln \sqrt{(x-a)^{2}+y^{2}}$

Q.47	In the solution of statically indeterminate problems, Castigliano's second theorem employs the
(A)	principle of virtual work
(B)	virtual displacement method
(C)	virtual force method
(D)	principle of least work
Q.48	Consider the function $f(x, y)=x^{4}+y^{4}-4 x y+1$. Which of the following is/are correct?
(D)	
The minimum value of f is -1	
(A)	The minimum value of f occurs at $(0,0)$
(B)	The point $(0,0)$ is a point of inflection
(C)	

Q.49	Consider the 2π-periodic function defined by
\qquad $f(x)=\left\{\begin{array}{cc\|}-1 & \text { if }-\pi<x \leq 0 \\ 1 & \text { if } 0<x<\pi\end{array}\right.$ Which of the following is/are correct about its Fourier series expansion, $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x ?$ (A) $a_{n}=\frac{1}{n} \forall n=1,2, \ldots .$. (B) $a_{0}=0$ (C) $b_{n}=\frac{4}{n \pi}$ if n is odd (D) $b_{n}=-\frac{4}{n \pi}$ if n is even 	

2024
IISC Bengaluru

Q.50	Consider the following momentum equation. Let A, B and C denote the first, second and third term on the left-hand side respectively and, D and E denote the first and second term on the right-hand side respectively. Which of the following statement(s) is/are correct?				
$\rho\left[\frac{\partial \boldsymbol{V}}{\partial t}+\operatorname{grad}\left\|\frac{V^{2}}{2}\right\|+(\operatorname{curl} \boldsymbol{V}) \times \boldsymbol{V}\right]=-\operatorname{grad}(P+\rho g z)+\mu \nabla^{2} \boldsymbol{V}$		$	$	(A)	If terms A, C and E vanish, then the flow is irrotational.
:---	:---				
(B)	If term A vanishes, then the flow is steady.				
(C)	If term D vanishes, then it leads to the Euler's equation.				
(D)	If terms A, B, C and E vanish, then it leads to the hydrostatic equation.				

Q.51	Consider the flow past a curved wall as shown in the figure. Which of the following statement(s) is/are correct?
(A)	Between T and U , the pressure gradient in the streamwise direction at the wall is positive.
(B)	U is the stagnation point. If X is a Poisson random variable with mean $\mu=1$, then the conditional probability of the event $\{X \geq 2\}$ (rounded off to two decimal places). wall is negative.
(D)	

Q. 53	The value of the triple integral $\iiint\left(x y^{2}+y z^{3}\right) d x d y d z$ over the region given by $-1 \leq x \leq 1,3 \leq y \leq 4,0 \leq z \leq 2$, is \qquad
Q. 54	A 4-cylinder, 4-stroke diesel engine operating at 3000 rpm has a compression ratio r of 12 and cut-off ratio r_{c} of 2.5. The temperature rise during the heat addition process is 2400 K . The efficiency of an air-standard diesel cycle is given by $\eta=1-\frac{1}{r^{\gamma-1}}\left(\frac{1}{\gamma} \frac{r_{c}^{\gamma}-1}{r_{c}-1}\right)$. Assume the working fluid as air with a mass flow rate of $0.05 \mathrm{~kg} / \mathrm{s}, \gamma=1.4$, and $C_{p}=1.004 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. The power output of the engine is \qquad kW (rounded off to the nearest integer).
Q. 55	A ship travelling in head seas experiences a bending moment of $200 \mathrm{MN}-\mathrm{m}$. The ship's cross section is assumed to be a box girder of 30 m beam and 10 m depth with a 10 mm plate thickness. The maximum bending stress is \qquad MPa (rounded off to the nearest integer).

2024

Q. 56	A single degree of freedom system has a mass, stiffness and damping of 200 kg , $20 \mathrm{~N} / \mathrm{m}$ and $62 \mathrm{~N}-\mathrm{s} / \mathrm{m}$ respectively. For a forced oscillation system, if the excitation frequency is equal to the undamped natural frequency, then the dynamic magnification factor is \qquad (rounded off to three decimal places).
Q. 57	The wave spectrum and the ship heave Response Amplitude Operator (RAO) are shown in the figure. The variance of the heave motion is \qquad m^{2} (rounded off to three decimal places).
	Heave RAO Wave spectrum

Q.58	Consider a thin-walled closed cylindrical steel vessel with an internal pressure of 2 N/mm ${ }^{2}$. The inner diameter is 1 m, and the thickness of the wall is 10 mm . The hoop stress is_ $/ \mathrm{mm}^{2}$ (rounded off to one decimal place).
Q.59	A propeller disc of diameter 2 m produces a thrust of 88 kN while advancing at a speed of $5 \mathrm{~m} / \mathrm{s}$ in fresh water of density $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Based on the axial momentum theory, the propeller efficiency is (rounded off to one decimal place).

Q.60	Consider a rectangular plate with in-plane loads. The state of the stress at an arbitrary angle θ is defined by σ_{x}, σ_{y} and $\tau_{x y}$ as shown in the figure. If the principal plane is at $\theta=45^{\circ}$, and the principal stresses are $\sigma_{x}=8 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{y}=3 \mathrm{~N} / \mathrm{mm}^{2}$, then the corresponding $\tau_{x y}=$
Q.61	A ship of 5000 tonnes displacement has a rectangular tank 6 m long and 10 m wide, half-filled with oil of relative density 0.8 . The virtual reduction in the transverse metacentric height of the ship due to free surface effect of the oil in the tank is cm.

Q. 62	An ocean wave of period 8 s and height 2 m is propagating in the Indian Ocean from south to north. According to linear wave theory, for the wave to be considered as a deep-water wave, the minimum water depth should be \qquad m (rounded off to the nearest integer).
Q. 63	Consider a gas turbine combustor with air as the working fluid. The flow enters the device at 500 K and leaves at 1400 K with a mass flow rate of $0.1 \mathrm{~kg} / \mathrm{s}$. The changes in kinetic energy and potential energy of the flow are neglected. Assuming $C_{v}=0.717 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $R=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$, the rate of heat addition is \qquad kW (rounded off to the nearest integer).
Q. 64	Consider a circular cylinder of diameter 0.5 m and length 2 m , rotating in clockwise direction at a speed of 100 rpm in a flow of velocity $2 \mathrm{~m} / \mathrm{s}$. Assume the density of the fluid as $1.225 \mathrm{~kg} / \mathrm{m}^{3}$ and $\pi=3.14$. By Kutta-Joukowski theorem, the lift force on the cylinder is \qquad N (rounded off to the nearest integer).

Q. 65 A new absolute temperature scale is proposed based on a Carnot engine operating between hot and cold reservoirs of temperatures T_{L} and T_{H} respectively. Let Q_{L} and Q_{H} be the respective heat transfers, with the relation given by $\frac{T_{L}}{T_{H}}=\frac{Q_{L}}{Q_{H}}$. On the new scale, the difference between the steam and ice points of water is 500 units and the efficiency of the engine is 0.268 . The steam point of water on this scale is \qquad units (rounded off to the nearest integer).

