[16]

(2)

(2)

(2)

(2)

(2)

(2)

(2)

BOARD QUESTION PAPER : MARCH 2023 MATHEMATICS AND STATISTICS

Time: 3 Hrs.

General instructions:

The question paper is divided into FOUR sections.

Max. Marks: 80

(1)	Section A: Q. 1 contains Eight multiple choice type of questions, each carrying Two marks.								
(2)	Section B:	Q. 2 contains PQ . 3 to Q . 1	14 contain Twe	swer type we short	answer type qu	urrying iestions,	each carrying		
(3)	Section C:	Two marks. (At O. 15 to O.	tempt any Eight) 26 contain Twe	lve short	answer type au	uestions	each carrving		
(-)	~	Three marks. (1	Attempt any Eigh	<i>t</i>)					
(4)	Section D:	Q. 27 to Q. 34 ((Attempt any F i	contain Eight lon ive)	g answer t	ype questions, eac	ch carry	ving Four marks.		
(5)	Use of log table is allowed. Use of calculator is not allowed.								
(6) (7)	Figures to the right indicate full marks.								
(7)	For each multiple choice type of question, it is mandatory to write the correct answer along with its								
	alphabet, e.g. (a)/(b)/(c)/(d), etc. No marks shall be given, if $ONLY$ the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.								
(9)	Start answer	to each section of	n a new page.						
	SECTION – A								
Q.1.	Select and write the correct answer for the following multiple choice type of questions:								
i.	If $p \land q$ is F, $p \rightarrow q$ is F then the truth values of p and q are respectively.								
	(a) T, T	(b)	T, F	(c)	F, T	(d)	F, F		
ii.	In $\triangle ABC$, if $c^2 + a^2 - b^2 = ac$, then $\angle B = _$.								
	(a) $\frac{\pi}{4}$	(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{2}$	(d)	$\frac{\pi}{6}$		
iii.	The area of the	he triangle with v	ertices (1, 2, 0), (1	1, 0, 2) and	l (0, 3, 1) in sq. ur	nit is			
	(a) $\sqrt{5}$	(b)	$\sqrt{7}$	(c)	$\sqrt{6}$	(d)	$\sqrt{3}$		
iv.	If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0) then the point of minimum								
	z = 3x + 2y is	;	(0, 10)	(c)	(4, 0)	(d)	(3, 4)		
	(a) (2, 2)		(0, 10)	(0)	(4, 0)	(u)	(3, 4)		
v.	If y is a funct	10n of x and log (.	(x + y) = 2xy, then	the value (of $y'(0) = $	 _(4)	1		
	(a) 2	(0)	0	(0)	-1	(u)	1		
vi.	$\int \cos^3 x \mathrm{d}x = \underline{\ }$	·							
	(a) $\frac{1}{12}\sin 3$	$3x + \frac{3}{4}\sin x + c$		(b)	$\frac{1}{12}\sin 3x + \frac{1}{4}\sin x$	+ c			
	(c) $\frac{1}{12}\sin^3$	$3x - \frac{3}{4}\sin x + c$		(d)	$\frac{1}{12}\sin 3x - \frac{1}{4}\sin x$	+ c			
vii.	The solution	of the differential	equation $\frac{dx}{dt} = \frac{xl}{x}$	$\frac{\log x}{t}$ is					
	(a) $x = e^{ct}$			(b)	$x + e^{ct} = 0$				
	(c) $x = e^t +$	⊦ t		(d)	$xe^{ct} = 0$				

Mathematics and Statistics

Math	ematics and Statistics								
viii.	Let the probability mass function (p.m.f.) of a random variable X be $P(X = x) = {}^{4}C_{x} \left(\frac{5}{9}\right)^{x} \times \left(\frac{4}{9}\right)^{4-x}$,								
	(a) $\frac{20}{9}$ (b) $\frac{9}{20}$ (c) $\frac{12}{9}$ (d) $\frac{9}{25}$	(2)							
Q.2. i.	Answer the following questions: Write the joint equation of co-ordinate axes.	[4] (1)							
ii.	Find the values of c which satisfy $ c\overline{u} = 3$ where $\overline{u} = \hat{i} + 2\hat{j} + 3\hat{k}$.								
iii.	Write $\int \cot x dx$.	(1)							
iv.	Write the degree of the differential equation $e^{\frac{dy}{dx}} + \frac{dy}{dx} = x$	(1)							
	SECTION – B								
Atten O.3.	Approximate Provide Approximate Provide Appro	[16]							
C	If $x < y$ then $x^2 < y^2$	(2)							
Q.4.	If $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ is a non singular matrix, then find A^{-1} by elementary row transformations.								
	Hence write the inverse of $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	(2)							
Q.5.	Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\sqrt{2}, \frac{\pi}{4}\right)$.	(2)							
Q.6.	If $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines and $h^2 = ab \neq 0$ then find the ratio of their slopes.								
Q.7.	If \overline{a} , \overline{b} , \overline{c} are the position vectors of the points A, B, C respectively and $5\overline{a} + 3\overline{b} - 8\overline{c} = \overline{0}$ then find the ratio in which the point C divides the line segment AB.								
Q.8.	Solve the following inequations graphically and write the corner points of the feasible region: $2x + 3y \le 6, x + y \ge 2, x \ge 0, y \ge 0$	(2)							
Q.9.	Show that the function $f(x) = x^3 + 10x + 7$, $x \in R$ is strictly increasing.	(2)							
Q.10.	Evaluate: $\int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 4x} \mathrm{d}x$	(2)							
Q.11.	Find the area of the region bounded by the curve $y^2 = 4x$, the X-axis and the lines $x = 1$, $x = 4$ for $y \ge 0$.	(2)							
Q.12.	Solve the differential equation $\cos x \cos y dy - \sin x \sin y dx = 0$	(2)							
Q.13.	Find the mean of number randomly selected from 1 to 15.	(2)							
Q.14.	Find the area of the region bounded by the curve $y = x^2$ and the line $y = 4$.	(2)							

2

(4)

SECTION - C

Q.23. Evaluate
$$\int x \tan^{-1} x dx$$

Q.24. Find the particular solution of the differential equation $\frac{dy}{dx} = e^{2y} \cos x$, when $x = \frac{\pi}{6}$, y = 0(3)

Q.25. For the following probability density function of a random variable X, find (a) P(X < 1) and (b) P(|X| < 1).

$$f(x) = \frac{x+2}{18} \quad ; \text{ for } -2 < x < 4$$

= 0 , otherwise (3)

Q.26. A die is thrown 6 times. If 'getting an odd number' is a success, find the probability of at least 5 successes. (3)

Attempt any FIVE of the following questions:

Q.27. Simplify the given circuit by writing its logical expression. Also write your conclusion.

Q.28. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 verify that $A(adjA) = (adjA)A = |A|I$ (4)

$$S_1$$

 S_2
 S_2

[20]

(3)

Mathematics and Statistics

Q.29. Prove that the volume of a tetrahedron with coterminus edges \bar{a} , \bar{b} and \bar{c} is $\frac{1}{6} \begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$. Hence, find the volume of tetrahedron whose coterminus edges are $\bar{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\bar{b} = -\hat{i} + \hat{j} + 2\hat{k}$ and $\bar{c} = 2\hat{i} + \hat{j} + 4\hat{k}$.

Q.30. Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line $\bar{\mathbf{r}} = (7\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 6\hat{\mathbf{k}}) + \lambda(-2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ (4)

Q.31. If
$$y = \cos(m \cos^{-1} x)$$
 then show that $(1 - x^2)\frac{d^2 y}{dx^2} - x\frac{dy}{dx} + m^2 y = 0$ (4)

Q.32. Verify Lagrange's mean value theorem for the function $f(x) = \sqrt{x+4}$ on the interval [0, 5]. (4)

Q.33. Evaluate:
$$\int \frac{2x^2 - 3}{(x^2 - 5)(x^2 + 4)} dx$$

Q.34. Prove that:
$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$

(4)

(4)

(4)