Page-1

Intermediate Examination Year 2023-2024

Mathematics Model Paper

Only Paper

Time – 3hrs.15min

M.M. - 100

Note: First 15 minutes are allotted for the candidates to read the question paper.

Instructions:-

- (i) There are nine questions in this question paper.
- (ii) All questions are compulsory.
- (iii) In the beginning of each question, the number of parts to be attempted are clearly mentioned.
- (iv) Marks allotted to the questions are indicated against them.
- (v) Start solving from the first question and proceed to solve till the last one. Do not waste your time over question which you cannot solve.
- 1. Write the correct alternative of each part in your answer book.
- (A) If function F:R \rightarrow R is defined as f(x)=3x write correct 01 option.
 - (i) f is one one onto (ii) f is many one onto
 - (iii) f is one-one but not onto
 - (iv) Neither one-one nor onto

(B) Let R be the relation in the Set N given by

$$R = \{(a, b):a = b-2, b>6\}$$
Choose the correct answer
(i) (2,4) \in R (ii) (3,8) \in R (iii) (6,8) \in R (iv) (8,7) \in R
(C) Value of $\int x e^x dx$ is
(i) e^x (ii) $(x+1)e^x$ (iii) $(x-1)e^x$ (iv) $\frac{x^2}{2}e^x$
(D) The Order of differential equation
 $2x^2 \frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
(I) 2 (ii) 1 (iii) 0 (iv) not defined

(E) If vectors $2\hat{\imath} + \hat{\jmath} + \hat{k}$ and $\hat{\imath} - 4\hat{\jmath} + \lambda\hat{k}$ are mutually **01** perpendicular to each other, then find out the value of λ .

(i) 3 (ii) 2 (iii) 4 (iv) 0

2 Attempt all parts of the following —

- (A) Find out principal value of $\cot^{-1}(-1/\sqrt{3})$ 01
- (B) Show that function f(x) = |x|, is continuous at x=0 01
- (C) Find order and degree of differential equation **01**

$$xy \frac{d^2y}{dx^2} + x(\frac{dy}{dx})^2 - y \frac{dy}{dx} = 0$$

02

02

(D) Find the direction cosines of the line passing through the two points (-2, 4, -5) and (1, 2, 3).01

(E) If
$$P(A) = \frac{7}{13}$$
, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, find the value of $P(A/B)$. 01

3. Attempt all parts of the following —

(A) If sets A = $\{1,2\}$ and B = $\{3,4\}$ then find out number of relation from A to B. 02

(B) If y=Asinx + Bcosx, then prove that $\frac{d^2y}{dx^2} + y = 0$ 02

(C) Find out the angle between vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.

- (D) If $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ Then find out the value of x and y.
- 4. Attempt all parts of the following —
- (A) Show that f(x) = 7x 3 is an increasing function on R **02**
- (B) Find a unit vector perpendicular to each of the vectors **02**

 $(\overline{a} + \overline{b})$ and $(\overline{a} - \overline{b})$, where $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ (C) Find the area of the parallelogram whose adjacent **02** sides are represented by the vectors $\overline{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\overline{b} = \hat{i} - \hat{j} + \hat{k}$

P(B)=p, Find the value of p such that A and B are mutually	7
exclusive.	02
5. Attempt all parts of the following —	
 (A) On the set Z of all integers consider the relation R={(a, b) : (a-b) is divisible by 2}. Show that R is an equivalence relation on Z. 	05
(B) If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$. Then prove that $(AB)^{-1} = B^{-1}A^{-1}$.	05
(C) Differentiate $(sinx)^{cosx}$ with respect to x.	05
(D) Evaluate : $\int_{-\pi/4}^{\pi/4} \sin^2 x dx$	05
(E) Find the shortest distance between the lines whose	05
vector equation are	
$\bar{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}), \text{ and}$	
$\bar{r} = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$	
6. Attempt all parts of the following —	
(A) Show that	05
$f(x) = \begin{cases} \frac{ x }{x} & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$	
is discontinuous at x=0	
(B) Find the area bounded by the curve	05
y= cosx between x=0, and x= 2 π	
(C) Find the value of P so that lines	05
$\frac{1-x}{3} = \frac{7y-14}{2P} = \frac{z-3}{2}$ and	
$\frac{7-7x}{3P} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angle	

(D) Let A and B be events such that $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$ and

- (D) Minimize Z=3x+2y, Subject to the constraints 05 $x+y\geq 8, 3x+5y\leq 15, x\geq 0, y\geq 0$.
- (E) In a hostel, 60% of the students read Hindi news paper, 40% read English news paper and 20% read both Hindi and English news papers. A Student is selected at random. (i) Find the probability that she reads neither Hindi nor

English news paper.

- (ii) If she reads Hindi news paper, find the probability that $2\frac{1}{2}$ she reads English newspaper too.
- 7. Attempt any one part of the following —

(A) If
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ then
find out the value of $(AB)^{-1}$. **08**

(B) Solve the following system of equations by matrix method. **08**

$$3x-2y+3z = 8$$

 $2x+y-z = 1$
 $4x-3y+2z = 4$

8. Attempt any one part of the following —

(A) Prove that the volume of the largest cone that can be inscribed in a sphere is $\frac{8}{27}$ of the volume of the sphere. 08 (B) Find the general solution of the differential equation $\frac{dy}{dx}$ - y = cosx. **08**

 $2\frac{1}{2}$

9. Attempt any one part of the following —

۲

(A) Evaluate :-
$$\int_0^{\pi/2} \log Sinxdx$$
. 08

(B) Evaluate:
$$\int_0^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$
 08