NRT/KS/19/2064

Bachelor of Science (B.Sc.) Semester–II Examination ELECTRONICS (ADVANCED DIGITAL ELECTRONICS) Optional Paper–2

Time: Three Hours [Maximum Marks: 50

- **N.B.**:— (1) **ALL** questions are compulsory and carry equal marks.
 - (2) Draw neat and well labelled diagrams wherever necessary.

EITHER

1. (A) Explain the working of CMOS NOR gate with the help of suitable circuit diagram. State its advantages and disadvantages. 6+4

OR

(B) Explain the working of TTL NAND gate with the help of suitable circuit diagram. State its merits and demerits.

EITHER

2. (A) Explain the construction and working of R-S Flip-Flop using NAND gates. Explain the working of clocked R-S Flip-Flop. 5+5

OR

(B) Explain the working of JKFF. What is Race around condition? How it is avoided in JKMS flip-flop?

EITHER

- 3. (A) Explain the working of 4-bit asynchronous counter with the help of timing diagram. Find the number of flip flops to construct :
 - (i) Mod 8
 - (ii) Mod 16 counters

8+2

OR

(B) Explain construction and working of 4 bit ring counter with the help of timing diagram. State its uses. 8+2

EITHER

4. (A) Explain construction and working of 4-bit SISO register. Explain construction and working of 4-bit PIPO register. 5+5

OR

(B) Explain the classification of memories on the basis of access time. Construct $4K \times 8$ memory using $4K \times 4$ memory using $4K \times 4$ modules.

- 5. Answer any **TEN** questions from the following:
 - (A) Define 'noise immunity'
 - (B) Define 'propagation delay'
 - (C) In TTL NAND gate both the inputs are left open, state the output.
 - (D) What is set up time?
 - (E) What is 'hold time'?
 - (F) Define 'Edge triggering'.
 - (G) State the use of ring counter.
 - (H) Define modulus of a counter.
 - (I) If clock frequency is 16kHz, calculate the output frequency of the four bit counter.
 - (J) What is PISO?
 - (K) State the number of 16×4 bits ICS required for its expansion to 32×4 bits
 - (L) What is Buffer register? $1\times10=10$

CLS—213 2 NRT/KS/19/2064