[Maximum Marks : 50

Bachelor of Science (B.Sc.) Semester-IV (C.B.S.) Examination

CHEMISTRY

(Physical Chemistry) CH-402

Paper-II

Time : Three Hours]

2.

3.

- **N.B.** :— (1) All **FIVE** questions are compulsory and carry equal marks
 - (2) Draw diagrams and give chemical equations wherever necessary.
- (A) Define entropy change. Derive an expression for the calculation of the entropy changes of an 1. ideal gas when the temperature changes from T_1 to T_2 and the pressure changes from P_1 to P_2 .
 - (B) Define standard free energy change. Derive relation between standard free energy change and equilibrium constant of the reaction. 5

OR

(C) The free energy changes accompanying a reaction are found to be -75.8 kJ at 298 K and -72.6 kJ at 308 K. Calculate the enthalpy change of the reaction at 303 K. $2\frac{1}{2}$ (D) Show that $\Delta G \leq 0$ is criteria for spontaneity and equilibrium. $2\frac{1}{2}$ (E) Calculate the amount of heat supplied to Carnot engine working between 368 K and 288 K if the maximum work obtained is 895 Joules. $2^{1/2}$ $2^{1/2}$ (F) State and explain partial molar quantities. (A) What do you understand by the EMF of a cell ? Derive expressions for ΔG , ΔH and ΔS in terms of EMF of a cell and the temperature coefficient of EMF. 5 (B) What is reference electrode? Explain how the pH of a solution is determined by using quinhydrone electrode. Determine the pH of the solution at 25° C from the following data : Pt, H_2 (1 atm.) | H^{+} (a = x) || normal calomel electrode. $E_{cell} = 0.6346$ V and $E_{calomel} = 0.2800$ V. 5 OR (C) Describe briefly reversible and irreversible cells. 21/2 (D) Derive Nernst equation for EMF of a cell at 25° C. $2^{1/2}$ (E) At 298 K the EMF of the following cell is 0.027 V. Calculate transport number of H⁺ and Cl⁻ ions : Pt, H, (1 atm.) | HCl (0.008 M) || HCl (0.029 M) | H, (1 atm.), Pt. $2\frac{1}{2}$ (F) Explain how redox titrations are carried out potentiometrically ? $2^{1/2}$ (A) What is nuclear fission ? How it is explained by liquid drop model ? Compare nuclear shell model with liquid drop model. 5 (B) Explain the application of dipole moment in : Predicting the geometry of molecules and (i) 5 (ii) Differentiating ortho, meta and para isomers. OR NXO-20091 1 (Contd.)

- (C) Calculate the binding energy per nucleon in helium atom ${}_{2}^{4}$ He, which has a mass defect 0.03038 amu. $2^{1/2}$
- (D) Discuss the nuclear stability on the basis of average binding energy per nucleon and mass number. $2^{1/2}$
- (E) The bond distance in H-I is 1.61 A° and its dipole moment is 0.4 D. Calculate the percentage ionic character of H-I bond. (Given $q = 1.602 \times 10^{-19}$ C, 1D = 3.336 × 10^{-30} cm.) $2\frac{1}{2}$ $2^{1/2}$
- (F) Explain polarisation of molecules in the electric field.
- 4. (A) Derive an expression for the rotational energy of a diatomic molecule taking it as a rigid rotator. Calculate the energy in Joules and eV of CO molecule in the first excited rotational level. (Given, Moment of Inertia, I = 1.46×10^{-46} Kg m², h = 6.626×10^{-34} JS, $1eV = 1.602 \times 10^{-19}$ J)
 - (B) What are harmonic and anharmonic oscillators? Draw their energy level diagrams. Write energy expression for them. 5

OR

- (C) What types of molecules exhibit rotational spectra ? Out of CO₂, H₂O, C₆H₆. NO which will exhibit pure rotational spectra ? 21/2
- (D) Explain why do molecules behave as non-rigid rotors.
- (E) Calculate the force constant for the bond in HCl from the fact that the fundamental vibrational frequency is 8.667 \times 10¹³ S⁻¹. The atomic masses are H = 1.673 \times 10⁻²⁷ Kg and $Cl = 58.06 \times 10^{-27}$ Kg. $2\frac{1}{2}$
- (F) What do you understand by normal modes of vibration of a polyatomic molecule ? Show diagrammatically the different normal mades of vibration of HO molecule. $2^{1/2}$
- 5. Attempt any TEN (10) questions out of the following :
 - Give any two statements of second law of thermodynamics. (i)
 - (ii) What is the basis of thermodynamic scale of temperature ?
 - (iii) Write integrated form of Van't Hoff equation.
 - (iv) What is Galvanic cell ?
 - (v) How is an oxidation-reduction electrode set up?
 - (vi) What is liquid junction potential?
 - (vii) Define nuclear fusion.
 - (viii) What is bond moment and group moment?
 - (ix) Write any two applications of radioisotopes in structure determination.
 - (x) What is spectroscopy ?
 - (xi) Why the energy levels of a harmonic oscillator are equally spaced ?
 - (xii) What do you understand by degree of freedom of molecule ? $1 \times 10 = 10$

2

NKT/KS/17/5143

5

21/2