Bachelor of Science (B.Sc.) Semester—IV Examination (New & Old)

CH-402 : CHEMISTRY (Physical Chemistry)

Compulsory Paper-[]

	(New Course)	
Time	Three Hours] [Maximum Marks : 5	0
N.B.	(1) All FIVE questions are compulsory.	
	(2) Write chemical equations and draw diagrams wherever necessary.	
<i>)</i> / (\ State and evolein love of annually and	5
	Derive Bragg's equation for diffraction of X-rays. The diffraction of X-rays of wavelength	
	3.0 × 10:10 m onion 6mt and = =00 = 1 = 2 = 2 = 2 = 2 = 2 = 2	5
	OR	
() Write the difference between crystalline and amorphous solids.	4
(A crystal plane cuts the X-axis at unit distance and is parallel to Y and Z axes. Calcular Weiss and Miller indices. 	
(Explain Powder method of crystallography. What is its advantages over other methods	
(Why is Bragg's method unable to show that KCl has FCC crystal structure like NaCl.	/2
2 (What is transport number? Explain moving boundary method for determination of transport number.	nt 5
()	Give the application of Kohlrausch's law in the determination of solubility of sparing soluble salt. The specific conductivity of 0.001028 m acetic acid is 4.95×10^{5} S.cm Calculate dissociation constant, if $\lambda \infty$ for acetic acid is 390.7 S cm ² mol ⁻¹ .	_
	OR	
i C	Write note on Relaxation effect.	⅓ 2
([Explain variation of equivalent conductivity of the weak electrolytes with dilution. 2	1 /2
		1/2
	The resistance of a 0.1 m KCl solution in a conductivity cell is 325 ohm and the speci- conductance of the same solution is 1.29 S m ⁻¹ . If the resistance of a 0.05 m NaCl solution the same cell is 752.4 ohm. Calculate the equivalent conductance of NaCl solution.	ij
		,

(Contd.)

			44 -41
3.		Derive an expression for the frequency of rotational lines in the pure rotational symbols. What types of molecules exhibit rotational spectra?	,
	d	What is simple harmonic oscillator? How does its potential energy vary with disp	lacement
	y s,	from equilibrium position? Sketch its vibrational energy levels. What is zer	o ponk
		energy ?	5
		OR	
	(C)	The rotational spectrum of CO shows a series of equidistant lines spaced 384.	235 m
		apart. Calculate moment of inertia and bond length of CO bond. (Atomic mass of	C = 12,
		$O = 16$ amu and $n = 6.626 \times 10^{-34}$ J.S.)	21/2
	(D)	Discuss P, Q and R branches of vibrational-rotational spectra.	21/2
	(E)	Describe normal modes of vibrations of H ₂ O molecule.	21/2
	(F)	Which of the following give pure rotational spectra $CO_{2(g)}$; HCl_{11} , $NO_{(g)}$ and $H_{2(g)}$	21/2
سد	(A)	Derive de Broglie relation. How is dual nature of electron verified experimenta	lly ?
	(**)	•	5
	(B)	Explain the applications of magnetic susceptibility in :	
	(-,	(i) Deciding molecular structure of substance.	
	,	(ii) The study of co-ordination compounds.	5
		OR	
	(C)	State the postulates of quantum mechanics.	21/2
		Explain the terms:	
	(- /	(i) Normalised wave function.	
		(ii) Orthogonal wave function.	21/2
	(E)	Calculate magnetic moment of a molecule having four unpaired electrons.	21/2
		Explain Gouy's method for the determination of magnetic susceptibility.	21/2
5.		empt any TEN questions of the following: https://www.rtmnuonline.com	
-		Identify the crystal system having unit cell parameters $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$.	
		Define Unit Cell.	
	/	Draw the unit cell of CsCl.	
		Give the relation between specific conductance, observed conductance and cell	constant
		State Ostwald's dilution law.	
	. ,	If the transport number of cation is 0.84. Calculate the transport number of anie	on
	-		511 .
		Give selection rule for pure vibrational spectra.	
		What is rigid rotor?	
	. ,	Define fundamental vibrational frequency.	
	,	Define threshold frequency.	
) State Heisenberg's Uncertainty principle.	11010
	(12) Write Clausius-Mosotti equation.	1×10=10