6

NRT/KS/19/2105

Bachelor of Science (B.Sc.) Semester—IV Examination

MATHEMATICS

(Partial Differential Equations and Calculus of Variation)

Optional Paper—I

Time : Three Hours] [Maximum Marks : 60

- **N.B.** :— (1) Solve all the **FIVE** questions.
 - (2) All questions carry equal marks.
 - (3) Questions 1 to 4 have an alternative. Solve each question in full (A & B) or its alternative in full (C & D).

UNIT—I

- 1. (A) Show that integral curves of the equation $\frac{dx}{5y 4z} = \frac{dy}{3z 5x} = \frac{dz}{4x 3y}$ are circles.
 - (B) Verify that the equation $y(1 + z^2)dx x(1 + z^2)dy + (x^2 + y^2)dz = 0$ is integrable and find its primitive.

OR

(C) Show that a necessary and sufficient condition that there exists between two functions u(x, y) and

$$v(x, y)$$
 a relation $F(u, v) = 0$, not involving x or y explicitly is that $\frac{\partial(u, v)}{\partial(x, y)} = 0$.

- (D) Form the partial differential equation by eliminating arbitrary constants and functions from the following equations:
 - (i) $(x-a)^2 + (y-b)^2 + z^2 = 1$; a and b are arbitrary constants.
 - (ii) $z = f(x + ay) + \phi(x ay)$; f and ϕ are arbitrary functions and a is a constant.

UNIT—II

2. (A) Find the general integral of the partial differential equation

$$(2xy - 1)p + (z - 2x^2)q = 2(x - yz)$$

and also the particular integral which passes through the line x = 1, y = 0.

(B) Show that the equations f(x, y, p, q) = 0, g(x, y, p, q) = 0 are compatible if:

$$\frac{\partial(f, g)}{\partial(x, p)} + \frac{\partial(f, g)}{\partial(y, q)} = 0.$$

Further, verify that the equations p = P(x, y), q = Q(x, y) are compatible if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

OR

(C) Find the general integral of the linear partial differential equation :

$$x(x^2 + 3y^2)p - y(3x^2 + y^2)q = 2z(y^2 - x^2).$$

(D) Prove that an equation of the form

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = f\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$$

is solvable by Jacobi's method. Hence solve the equation:

$$\left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} - \frac{\partial u}{\partial z}\right) \left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right) = 1.$$

UNIT—III

3. (A) Solve the partial differential equation $(D'^2 + DD' + D')z = \sin(2x - 3y); D = \frac{\partial}{\partial x}, D' = \frac{\partial}{\partial y}$.

6

6

(B) Solve $(D^2 - 4DD' + 4D'^2)z = 2 \cos x - y^2$.

OR

(C) Solve the partial differential equation :

$$y^2 \frac{\partial^2 z}{\partial y^2} - y \frac{\partial z}{\partial y} = x \cdot y^2.$$

(D) Solve $(D - 3D' - 2)^2z = e^{2x} \tan (3x + y)$.

UNIT—IV

- 4. (A) Find the shortest curve joining the two points (x_1, y_1) and (x_2, y_2) in the plane.
 - (B) Find the extremal of the functional $I[y(x)] = \int_{0}^{1} (xy' y'^{2})dx$; y(0) = 1, $y(1) = \frac{1}{4}$.

OR

- (C) Find the general extremals of the functional $I[y(x), z(x)] = \int_{x_1}^{x_2} (y'^2 2y^2 + 2yz z'^2) dx$. 6
- (D) Derive Euler-Ostrogradsky equation for the functional $I = \iint_{D} \sqrt{1 + p^2 + q^2} \, dxdy$; $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

Question—5

5. (A) Solve the equation :

$$3y^2z^2dx + 4z^2x^2dy + 5x^2y^2dz = 0$$

- (B) Transform the equation (y + z)dx + (z + x)dy + (x + y)dz = 0 into a homogeneous equation in y and x using substitution z = x + ky, k is a constant.
- (C) Find complete integral of $\sqrt{p} + \sqrt{q} = 2x$, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.
- (D) Find complete integral of the equation $pqz = p^2(xq + p^2) + q^2(yp + q^2)$. 1½
- (E) Find particular integral of the partial differential equation $(D^2 4D'^2)z = e^{4x-2y}$. $1\frac{1}{2}$

(F) Solve
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial x}$$
.

- (G) Find the distance of order zero between the functions $y = x^3$ and $y = x^2$ on [0, 2].
- (H) Show that extremal of the functional $I[y(x)] = \int_0^1 y'^2 dx$; y(0) = 0, y(1) = 1 is y = x. $1\frac{1}{2}$

2

CLS—1542