NRT/KS/19/2108

Bachelor of Science (B.Sc.) Semester—IV Examination PHYSICS (Solid State Electronics and Molecular Physics) Optional Paper—II

Time : Three Hours]

[Maximum Marks : 50

N.B. :— (1) All questions are compulsory.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

- (A) Considering transistor as two port device, write h-parameter equations for transistor in common emitter mode. Define h-parameters of a transistor in CE mode. Why these parameters are called hybrid parameter ?
 - (B) (i) Explain the construction and working of light emitting diode. 3
 - (ii) Calculate the energy band gap of Ga As P semiconducting material of LED with output light having wavelength 6715 Å.

(Given :
$$q = 1.6 \times 10^{-19}$$
 C, C = 3 × 10⁸ m/s, h = 6.626 × 10^{-34} J-s) 2

OR

- (C) Draw the circuit diagram of common emitter transistor amplifier and explain its working. $2\frac{1}{2}$
- (D) A germanium transistor has a collector cut-off current $I_{CBO} = 14 \ \mu A$ at room temperature and $\beta = 50$. It is used in common emitter amplifier.
 - (i) Calculate the collector current when base current $I_{B} = 0.2 \ \mu A$.
 - (ii) Assuming β does not change with temperature, find the new collector current, if the temperature of the transistor rises through 50°C. $2\frac{1}{2}$
- (E) Explain construction and working of solar cell.
- (F) What is stabilization ? Explain the necessity of bias stabilization of transistor amplifier circuit. $2\frac{1}{2}$

EITHER

- (A) What is MOSFET ? What are different types of MOSFETs ? Discuss the drain and transfer characteristics of n-channel depletion MOSFETs.
 - (B) (i) Draw the circuit diagram of JFET as an amplifier. Explain its working. 3
 - (ii) Calculate the voltage gain of JFET voltage amplifier having transconductance 4000 μ mho and the load resistance 10 k Ω .

OR

- (C) What is JFET ? Explain the output characteristics of a JFET. 2¹/₂
- (D) Define transconductance, drain resistance and amplification factor in JFET. State the relation between them. 2¹/₂

 $2^{1/2}$

 $2^{1/2}$

3

(E) From the following given data :

V _{GS} (volts)	:	0	0	0.2
V _{DS} (volts)	:	7	16	16
I _D (mA)	:	10	10.3	9.8

Calculate a.c. drain resistance and amplification factor.

 (F) Draw the well labelled diagram showing the construction of p-channel enhancement MOSFET. State special features of MOSFETs. 2¹/₂

EITHER

3.	(A)	Give the	theory	of	origin	of	pure	rotational	spectra	for	a di	atomic	molecule.	Write the
	selection rules for it.							5						

- (B) (i) Discuss the different type of rigid molecules on the basis of their moment of inertia.
 - (ii) The spacing of a series of line in the microwave spectrum of AIH is constant at 12.604 cm^{-1} . Calculate the moment of inertia of AIH molecule about its axis of rotation. (h = $6.602 \times 10^{-27} \text{ erg-s}$).

OR

(C) Discuss in brief Born-Oppenheimer approximation.	21/2
--	------

- (D) Draw the energy level diagram for the allowed transitions in rotation-vibration emission spectra when the vibrational transition takes place between V = 1 to V = 0. $2\frac{1}{2}$
- (E) Explain the intensity distribution of rotational spectral lines. $2\frac{1}{2}$
- (F) Moment of inertia of carbon monooxide molecule is 1.46×10^{-46} kg-m². Calculate the energy of this molecule in lowest rotational energy level in eV. $2\frac{1}{2}$

EITHER

- 4. (A) What is Raman effect ? Explain Raman effect using quantum theory. 5
 - (B) (i) Describe the experimental arrangement to study the Raman effect. 3
 - (ii) For the exciting line of 4358 Å spectrum of benzene shows Raman lines for $\Delta \overline{v} = 608, 846, 995$ and 1178 cm⁻¹. If Benzene is irradiated by monochromatic light of wavelength 5461Å, what will be the wavelength of Raman lines for benzene. 2

OR

(C)	State Frank-Condon principle.	Explain morse curve.	21/2
-----	-------------------------------	----------------------	------

- (D) Explain Electron Spin Resonance (ESR).
- (E) A substance shows a Raman line at 4567 Å when exciting line 4358 Å is used. Deduce the position of stokes' and anti-stokes' lines for the same substance when the exciting line 4047 Å is used.
 2¹/₂
- (F) Draw main components of Nuclear Magnetic Resonance Spectrometer. State any four applications of NMR. 2¹/₂

 $2^{1/2}$

- 5. Attempt any **TEN** questions :—
 - (i) State necessity of heat sink in transistor.
 - (ii) Draw the transfer characteristics of transistor in common emitter mode.
 - (iii) The current gain for a transistor is $\beta = 350$. Calculate the current gain α .
 - (iv) Why MOSFETs have higher input resistance than JFET ?
 - (v) Define pinch off voltage in a JFET.
 - (vi) In a FET, transconductance is 6 mA/V, when reverse gate to source voltage changes by 0.2 V. Find corresponding change in drain current.
 - (vii) Why homonuclear molecule H_2 and N_2 donot show rotational spectra ?
 - (viii) The force constant for HCl molecule is 468.2 N/m and reduced mass of HCl molecule is 1.556×10^{-27} kg. What is the natural frequency of vibration of HCl molecule ?
 - (ix) State two application of vibrational spectroscopy.
 - (x) Define dissociation energy of a molecule.
 - (xi) Why a monochromatic source is necessary to study Raman effect ?
 - (xii) With the exciting line 4358 Å a sample gives stokes' line at 4458 Å. Express this stokes' line in wave number. $1 \times 10=10$