NRT/KS/19/2137

Bachelor of Science (B.Sc.) Semester—V Examination ATOMIC PHYSICS, FREE ELECTRON THEORY AND STATISTICAL PHYSICS

Optional Paper—1

(Physics)

Time : Three Hours]

[Maximum Marks : 50

3

N.B. :— (1) **ALL** questions are compulsory.

(2) Draw neat diagrams wherever necessary.

EITHER

1.	(A)	What is Zeeman ef	ffect ? Explain	with neat	diagram	experimental	arrangement o	f Zeeman
		effect.						5

- (B) (i) What is meant by space quantization of orbits in vector atom model ?
 - (ii) Compute the magnetic field gradient of 0.4 m long Stern-Gerlach experiment that would produce a 2 mm separation at the end of the magnet between two components of a beam of silver atoms emitted from an oven at 900°C. The magnetic dipole moment of silver is due to single $\ell = 0$ electron. 2

OR

(\mathbf{C})	What is meant by I-S	coupling ? Explain	with example	21/2
(\mathbf{U})	what is meant by L-S	coupling : Explain	with example	

- (D) Calculate the values of L, S and J for p-electron in an atom. $2\frac{1}{2}$
- (E) Calculate the magnetic field in order to observe the anomalous Zeeman effect of D-lines of wavelengths. $\lambda_1 = 5896$ Å and $\lambda_2 = 5890$ Å. (c = 3×10^{10} m/s; e/m = 1.76×10^{11} c/kg) $2\frac{1}{2}$
- (F) State Hund's rule and explain it with the help of suitable example. $2\frac{1}{2}$

EITHER

- (A) State assumptions of Drude-Lorentz theory. Derive an expression for electrical conductivity of metal on the basis of free electron theory.
 - (B) (i) Define Fermi energy. Show that Fermi energy E_F is a function of density of free electrons. 3
 - (ii) Calculate the total number of free electrons present in 1 cm length of a monoatomic one-dimensional copper wire.

(Given : Fermi temperature $T_{F} = 8.1 \times 10^{4}$ K, Mass of electron = 9.1×10^{-31} kg) 2

OR

- (C) Explain the concept of hole in solids.
- (D) Derive expression for density of states for a free electron gas in one dimension. $2\frac{1}{2}$
- (E) Explain how atomic energy levels split into bands when number of atoms brought together to form crystal. $2\frac{1}{2}$
- (F) The resistivity of a rectangular bar of p-type silicon is $2 \times 10^5 \Omega$.cm. The magnetic field of 0.1 wb/m² is applied to bar of thickness 0.3 cm. If the measured values of current and Hall voltage are 10 μ A and 50 mv respectively. Calculate the mobility of charge carriers. 2¹/₂

 $2\frac{1}{2}$

3

 $2^{1/2}$

 $2\frac{1}{2}$

EITHER

- (A) Derive Maxwell's law of distribution of speeds for the molecules of an ideal gas, using M.B. energy distribution formula, derive expression for most probable speed.
 - (B) (i) Explain Macro and Microstates.
 - (ii) Calculate the value of root mean square speed of a molecule of hydrogen at 27°C. (Given : Boltzmann's constant $k = 1.38 \times 10^{-23}$ J/molecule K, Mass of hydrogen molecule = 3.34×10^{-27} kg). 2

OR

- (C) Explain accessible and inaccessible states.
- (D) Show that the smallest volume of unit cell in a phase space is h^3 (h is Planck's constant).
- (E) What are the limitations of Maxwell-Boltzmann's statistics ? $2\frac{1}{2}$
- (F) Four molecules are to be distributed in two compartments. Calculate possible number of macrostates and corresponding number of microstates. 2¹/₂

EITHER

- 4. (A) Derive an expression for most probable distribution by using Fermi-Dirac statistics. 5
 - (B) (i) Derive Planck's law of radiation for black body from Bose-Einstein energy distribution law.
 3
 - (ii) Fermi energy of conduction of electrons in silver is 5.48 eV. Calculate the number of such electrons per cm³.

(Given : $h = 6.62 \times 10^{-27}$ erg-sec, Mass of electron = 9.1×10^{-27} kg, $1eV = 1.62 \times 10^{12}$ erg)

2

 $2^{1/2}$

OR

- (C) Explain Bose-Einstein condensation. 2¹/₂
- (D) Derive an expression for Fermi-energy for free electrons in metal. $2\frac{1}{2}$
- (E) Distinguish between Bose-Einstein and Fermi-Dirac statistics.
- (F) Three particles are to be distributed in four energy levels a, b, c and d. Calculate all possible ways of this distribution when particles are (a) bosons and (b) fermions. $2\frac{1}{2}$

5. Attempt any *ten* :

- (i) State the Pauli's exclusion principle.
- (ii) State any two drawbacks of Bohr's atomic theory.
- (iii) Define Bohr Magneton. State its value.
- (iv) State the importance of Hall effect.
- (v) Calculate number of collisions per second of a molecule of a gas having mean free path 1.876×10^{-7} m if average speed of molecule is 511 m/s.
- (vi) Calculate the mobility of charge carriers in a semiconductor having conductivity $2.04 \times 10^{-2} \ \Omega^{-1} m^{-1}$ and Hall coefficient is $5 \times 10^{-11} \ m^3/c$.
- (vii) Define thermodynamic probability.
- (viii) Explain phase space.
- (ix) State the principle of priori probability.
- (x) What is Fermi level ?
- (xi) Calculate the number of ways of arranging 8 Fermions in 12 phase space cells.
- (xii) What are Bosons and Fermions ?

 1×10