NKT/KS/17/5173

Bachelor of Science B.Sc. Semester—V (C.B.S.) Examination

CH-502: PHYSICAL CHEMISTRY

(Chemistry)

Paper—2

		Tupe: 2					
Time	e : T	hree Hours] [Maximum Marks : 5	0				
N.B.	:	(1) All FIVE questions are compulsory and carry equal marks.					
		(2) Draw diagrams wherever necessary.					
1.	(A)	Explain how classical mechanics fails when applied to:					
		(i) Photoelectric effect and					
		(ii) Heat capacity of solids.	5				
	(B)	Derive Schrodinger wave equation by considering wave as a vibration of stretched string.	5				
	OR						
	(C)	State and explain Heisenberg's uncertainty principle.	2				
	(D)	What are normalized and orthogonal wave functions?	½				
	(E)	State postulates of quantum mechanics. 2½	½				
	(F)	Calculate lowest energy and spacing between first two energy levels for an electron when place	d				
		in a box of length 1A°.	2				
2.	(A)	What are probability distribution curves? Draw and discuss radial probability distribution curve for 3S and 3P orbitals.	es 5				
	(B)	What are the conditions for the formation of molecular orbitals from atomic orbitals? Discuss	SS				
		the physical picture of bonding and antibonding wave functions.	5				
OR							
	(C)	Explain azimuthal and magnetic quantum numbers. 2½	′ 2				
(D) Write Schrodinger wave equation for hydrogen like particles in terms of Cartesian co-ord							
		835 24	2				
NXO-	—1210	O3 (Contd.	.)				

	(E)	Discuss graphically the variation of electron probability density for bonding molecular or along the internuclear axis.	bitals 2½			
	(F)	Explain valence bond theory for H ₂ molecule.	21/2			
3.	(A) (B)	Derive thermodynamically the relation, $\Delta T_{_b} = K_{_b} \times m$ (m = molality of the solution). Define :	5			
		(i) Magnetic permeability and				
		(ii) Molar magnetic susceptibility.				
		Describe Gouy's method for the determination of magnetic susceptibility.	5			
OR						
	(C)	The vapour pressure of a 5% aqueous solution of non-volatile organic substance at 373 K is 745 Calculate the molecular mass of solute.	mm. 2½			
	(D)	Discuss Berkeley- Hartley method for determination of osmotic pressure.	21/2			
	(E)	What is van't Hoff factor ? How is it used for the determination of degree of association solute in the solution ?	of a 2½			
	(F)	How magnetic susceptibility of a substance can be used to decide the structure of co-ordin compounds ?	ation 2½			
4.	(A)	State Grotthus-Draper law and Stark-Einstein's law of photochemical equivalence.				
		Calculate the energy of one photon of light of wavelength 2450 A°. Will it be ab dissociate a bond in diatomic molecule which absorbs this photon and has a bond energy equence 95 Kcal mol $^{-1}$ (h = 6.626×10^{-34} JS mol $^{-1}$, C = 3×10^8 ms $^{-1}$ and N = 6.023×10^{23} mol $^{-1}$	ual to			
	(B)	Define quantum yield of photochemical reactions. How can it be experimentally determine What are the reasons for high quantum yield of photochemical reactions?	ned ?			
OR						
	(C)	Explain Rayleigh's lines, Stokes' lines and anti-Stokes' lines in Raman spectra.	21/2			
	(D)	What are the advantages of Raman spectroscopy over infrared spectroscopy ?	2½			
	(E)	Explain the phenomenon of radiative and non-radiative transitions using Jablonski diagram.	2½			
	(F)	Write a short note on photosensitization.	21/2			

2

NXO-12103

NKT/KS/17/5173

- 5. Attempt any **TEN** questions of the following:
 - (i) Define perfect blackbody.
 - (ii) State de-Broglie's hypothesis.
 - (iii) What is an operator ?
 - (iv) Write the expression for the energy for hydrogen like particles.
 - (v) What is an orbital?
 - (vi) Draw potential energy curve for H_2^+ ion.
 - (vii) State Raoult's law.
 - (viii) Define cryoscopic constant.
 - (ix) Calculate the magnetic moment of a molecule having four unpaired electrons.
 - (x) State Beer's law.
 - (xi) What do you mean by singlet ground state?
 - (xii) What is selection rule for pure rotational Raman spectra?

 $1 \times 10 = 10$

