Bachelor of Science (B.Sc.) Semester-V (C.B.S.) Examination

CH-502 : PHYSICAL CHEMISTRY

Paper—2

(Chemistry)

Time : Three Hours]

[Maximum Marks : 50

 $2^{1/2}$

 $2^{1/2}$

5

(2) Draw diagrams and give chemical equations wherever necessary.

1. (A) Briefly explain de-Broglie hypothesis related to dual nature of matter. Derive de-Broglie relation.

Calculate the de-Broglie wavelength of a ball of mass 100 g moving with a speed of 60 ms^{-1} .

(B) Write postulates of quantum mechanics. Derive Schrodinger Wave Equation based on the postulates of quantum mechanics.

OR

(\mathbf{C})	How	does	the	classical	mechanics	fail	to	explain	heat	capacity	of	solids	?	21/	5
(\mathbf{C})	110 W	uocs	unc	classical	meenames	ran	ω	CAPIani	neat	capacity	or	sonus	•	<u> </u>	2

- (D) What are orthogonal and normalized wave functions ?
- (E) Find the energy of an electron in one dimensional box having width 1 Å moving in L-shell. (Given : Mass of electron = 9.1×10^{-31} kg) $2\frac{1}{2}$
- (F) State and explain Heisenberg's Uncertainty Principle. 2¹/₂
- (A) Give the basic ideas of molecular orbital theory. Explain the formation of H⁺₂ ion by LCAO method.

(B) What are radial probability distribution curves ? Explain probability distribution curves for 3s and 3p orbitals.

OR

(C)	What are quantum	numbers	?	Give	the	significance	of	magnetic	quantum	number.	21⁄2
-----	------------------	---------	---	------	-----	--------------	----	----------	---------	---------	------

- (D) Give the physical picture of bonding and anti-bonding wave functions. $2\frac{1}{2}$
- (E) What are the criteria for forming molecular orbitals from atomic orbitals ? $2\frac{1}{2}$
- (F) Write the equations of angular wave functions $\theta(\theta)$, $\phi(\phi)$ and Radial wave functions $R(\gamma)$.

3. (A) What are colligative properties ? Derive the relationship between depression in freezing point and molar mass of a non-volatile solute. 5

- (B) Give the applications of magnetic susceptibility measurement :
 - (i) in the study of co-ordination compounds and
 - (ii) in confirming the structure of a molecule.

OR

- (C) A solution of 1g of sodium chloride in 100 g of water freezes at 0.604°C. The molal depression constant of water is 1.86 K m¹. Calculate the degree of dissociation of sodium chloride. $2^{1/2}$
- (D) What is relative lowering of vapour pressure ? Derive the relationship between relative lowering of vapour pressure and molar mass of a non-volatile solute. $2\frac{1}{2}$
- (E) Discuss Gouy's method for determination of magnetic susceptibility. 2¹/₂
- (F) Discuss Berkeley-Hartley method for determination of osmotic pressure.

RQA-33081

(Contd.)

21/2

rtmnuonline.com

- (A) What are radiative and non-radiative transitions ? Explain with the help of Jablonski 4. 5 diagram.
 - (B) What is Raman Effect? Give the brief discussion of formation of Rayleigh lines and Raman lines. What is the relationship between polarizability of molecules and Raman spectra ?

5

(C) What is photosensitization ? Give suitable examples. 21/2 (D) Give the reasons of low quantum yield. $2^{1/2}$ (E) Give the advantages of Raman spectra over IR spectra. $2^{1/2}$ (F) State and explain Einstein's law of photochemical equivalence. 21/2

OR

Solve any TEN : 5.

- (i) What is an operator ?

- (v) Write Schrodinger wave equation for H-atom.
 (vi) Give two points of differences between VBT and MOT. In the optimized of the second se (ix) Calculate the molarity of a solution containing 20% by weight of HCl. (Given : Density of
- (xi) State Lambert Law.
- www.thmuonine.com (xii) What are isotropically polarizable molecules ?

835

335

1×10=10