NRT/KS/19/2135

Bachelor of Science (B.Sc.) Semester—V Examination MATHEMATICS Optional Paper—1 (Analysis)

Time : Three Hours]

[Maximum Marks : 60

- **N.B.** :— (1) Solve all the **FIVE** questions.
 - (2) All questions carry equal marks.
 - (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

- 1. (A) Show that any function f(x) defined on symmetrically placed interval can be written as the sum of an even function and an odd function. Hence, show how to write $f(x) = x + x^2 + x^3$ as per above statement. 6
 - (B) Find the Fourier series for the function of period 2π defined by

$$f(x) = \begin{cases} x + \frac{\pi}{2} & , & -\pi < x \le 0 \\ \frac{\pi}{2} - x & , & 0 < x < \pi \end{cases}$$

and deduce that at x = 0,

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
6

OR

- (C) Find the Fourier series for the function f(x) defined by $f(x) = |x|, -2 \le x \le 2$. 6
- (D) Obtain the half range Fourier cosine series for the function $f(x) = \sin x$ in $0 \le x \le \pi$.

Hence show that
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$
. 6

UNIT—II

- 2. (A) Define Lower R-S integral and Upper R-S integral for the function f with respect to α on [a, b]. Also prove the relation $\int_{a}^{b} f d\alpha \leq \int_{a}^{-b} f d\alpha$. 6
 - (B) If f is continuous on [a, b] then prove that $f \in R(\alpha)$ on [a, b].

OR

- (C) Let $f \in R$ on [a, b]. For $a \le x \le b$, put $F(x) = \int_{a}^{x} f(f) dt$. If f is continuous at a point x_0 of
 - [a, b], then prove that F is differentiable at x_0 and $F'(x_0) = f(x_0)$. 6
- (D) If $f \in R(\alpha)$ on [a, b] and if a < c < b, then prove that $f \in R(\alpha)$ on [a, c] and $f \in R(\alpha)$ on [c, b]. Hence, show that

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha \,.$$

CLS—13393

6

6

UNIT-III

- (A) If n is real, then show that $r^{n}[\cos n\theta + i \sin n\theta]$ is analytic except possible when r = 0 and 3. that its derivative is $nr^{n-1}[\cos(n-1)\theta + i \sin(n-1)\theta]$. 6
 - (B) Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and determine its harmonic conjugate. 6

OR

- (C) If $u = (x 1)^3 3xy^2 + 3y^2$, determine v so that u + iv is an analytic function of x + iy. 6
- (D) If u and v are harmonic in a region R, then prove that $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is analytic

in R.

UNIT-IV

(A) Let a rectangular domain R be bounded by lines x = 0, y = 0, x = 2, y = 3 in 4. z-plane. Determine the region R' of w-plane into which R is mapped under the transformation $w = \sqrt{2} e^{\frac{i\pi}{4}} z + (1-3i)$. 6

(B) Show that every general bilinear transformation can be considered as a combination of the transformations of translation, rotation, stretching and inversion. 6

OR

(C) Show that $w = \frac{5-4z}{4z-2}$ transforms the circle |z| = 1 into a circle of radius unity in w-plane 6

and find the centre of the circle.

(D) Find the bilinear transformation which maps the points z = -2, 0, 2 into the points w = 0, i, -i respectively. 6

5. (A) Find the Fourier series coefficient b_n for the function f(x) = x, $-\pi \le x \le \pi$. 11/2

(B) Obtain Fourier coefficient a_1 for the function

$$f(x) = \cos \pi x, -1 \le x \le 1.$$
 1¹/₂

(C) If $f_1(x) \le f_2(x)$ on [a, b], then prove that

$$\int_{a}^{b} f_{1} d\alpha \leq \int_{a}^{b} f_{2} d\alpha.$$
11/2

- (D) State the fundamental theorem of calculus.
- (E) Prove that $u = y^3 3x^2y$ is a harmonic function.
- (F) Prove that an analytic function with constant real part is constant. 11/2
- (G) Show that w = iz + i maps half plane y > 0 onto half plane u < 0. 11/2
- (H) Find the fixed points of the bilinear transformation

$$w = \frac{z+1}{z-1}.$$
 11/2

CLS-13393

 $1\frac{1}{2}$

 $1\frac{1}{2}$