(Contd.)

NRT/KS/19/2138

Bachelor of Science (B.Sc.) Semester–V Examination QUANTUM MECHANICS, NANOMATERIALS AND NANOTECHNOLOGY Optional Paper–2

(Physics)

Time: Three Hours] [Maximum Marks: 50 **N.B.**:— (1) All questions are compulsory. (2) Draw neat diagrams wherever necessary. **EITHER** (A) What is Compton Effect? Discuss experimental arrangement of Compton Effect. Obtain an 1. expression for Compton shift with results. 5 (B) (i) What are the significance of Compton effect? 3 (ii) A monochromatic beam of X-ray having wavelength 5.5×10⁻¹¹m is scattered through an angle 45°. Find the wavelength of scattered beam. (Given: $M_0 = 9.1 \times 10^{-31} \text{kg}$, $h = 6.63 \times 10^{-34} \text{JS}$, $C = 3 \times 10^8 \text{ m/sec}$) 2 OR $2\frac{1}{2}$ (C) State and prove de-Broglie's hypothesis. (D) Show that the electron has a wave like nature by Davisson and Germer's experiment. $2\frac{1}{2}$ (E) Why electron can not exist inside the nucleus? Explain. 21/2 (F) The life time of an excited state of an atom is about 10⁻⁸ sec. Calculate the minimum uncertainty in the determination of energy of an excited state. (Given : $h = 6.63 \times 10^{-34} \text{ JS}$) $2\frac{1}{2}$ **EITHER** 2. (A) What do you mean by free particle? Obtain an expression for the energy of particle confined in a rectangular one dimensional box. 5 3 (B) (i) Explain degeneracy and non-degeneracy. (ii) Find the minimum energy of an electron constrained to move linearly in infinitely high potential box of length 10⁻¹¹ m. (Give : $h = 6.63 \times 10^{-34} \text{ JS}, M = 9.1 \times 10^{-31} \text{kg}$) 2 OR (C) Derive Schrodinger's time independent wave equation for a free particle. $2\frac{1}{2}$ (D) What is normalization of a wave function? How it is mathematically expressed? $2\frac{1}{2}$ (E) Explain the physical significance of wave function ψ . $2\frac{1}{2}$ (F) Find the lowest energy of an electron confined in a cubical box of each side 1 AV in ev. (Given : $h = 6.63 \times 10^{-34} \text{ JS}, m = 9.1 \times 10^{-31} \text{kg}$) $2\frac{1}{2}$ **EITHER** (A) Explain Top-down and Bottom-up approaches for the synthesis of nanomaterials. 5 3. 3 Explain 3D, 2D, 1D and 0D materials. (B) (i) 2 (ii) What would be the surface to volume ratio of a quantum dot of radius 2 nm?

1

CLS-13396

OR

(C) Discuss the physical properties of nanomaterials.

 $2\frac{1}{2}$

(D) Differentiate between nanomaterials and bulk materials.

- $2\frac{1}{2}$
- (E) Why surface to volume ratio is very high for nanoparticles as compared to bulk materials? Explain with an example. $2\frac{1}{2}$
- (F) The block of nanomaterials has a surface area 36m² and volume of 1m³. Calculate the surface to volume ratio of the block system.

EITHER

4. (A) Discuss how Debye-Scherrer's technique is used for the determination of size of nano-materials.

5

- (B) (i) State the different techniques to determine particle size of nanomaterials and distinguish between them in short.
 - (ii) Calculate the crystallite size using Debye-Scherrer's formula from the following data:

 Source wavelength = 0.154 nm; Peak FWHM = 0.5 degrees; Peak position = 27°; Scherrer's constant = 0.94.

OR

- (C) What is Sol-Gel method? Explain the synthesis of nanomaterials by this method.
- (D) What is BET? How BET technique is used for the determination of specific surface? 2½
- (E) Distinguish between SEM and TEM.

 $2\frac{1}{2}$

- (F) Calculate wavelength of X-ray diffracted from nano material having interplanar distance of 0.89 AU and an angle of diffraction of 30° in first order.
- 5. Attempt any **ten** (1 mark each):
 - (i) Write Planck's Law in terms of wavelength.
 - (ii) State Heisenberg's uncertainty principle.
 - (iii) Find the de-Broglie wavelength for an electron moving at the speed of 5×10^6 m/s.

(Given : $h = 6.63 \times 10^{-34} \text{ JS}$)

- (iv) Define Expectation value.
- (v) State momentum and energy operator.
- (vi) What is well behaved wave function? State the conditions for it.
- (vii) State, why one nanometer is a magical point on the dimensional scale.
- (viii) Write any two applications of nanomaterials in medical science.
- (ix) What are the fundamental issues in nanomaterials? State any two.
- (x) Why wet chemical synthesis is easy as compared to other synthesis methods?
- (xi) What are the disadvantages of SEM?
- (xii) What are the applications of nanotechnology?

10