NKT/KS/17/5203

Bachelor of Science (B.Sc.) Semester—VI (C.B.S.) Examination ELECTRONICS , FIBER OPTICS, COMMUNICATION AND DIGITAL ELECTRONICS Paper—2

(Physics)

Time : Three Hours]

N.B. :— (1) ALL questions are compulsory.

- (2) Draw neat diagrams/circuits wherever necessary.
- (3) The symbols used have their usual meanings.

EITHER

- 1. (A) Explain terms summing point and virtual ground in an operational amplifier. Explain how an operational amplifier can be used as inverting amplifier. Derive the expression for its voltage gain. 5
 - (B) (i) Draw the circuit diagram of a transistor RC phase shift oscillator and explain its working. 3
 - (ii) In a phase shift oscillator, $R_1 = R_2 = R_3 = 1 \text{ m}\Omega$ and $C_1 = C_2 = C_3 = 75 \text{ pf.}$ At what frequency, does the circuit oscillate ?

OR

(C) Define terms :—

- (i) Common Mode Rejection Ratio (CMRR)
- (ii) Slew Rate
- (iii) Input bias current

in an operational amplifier.

- (D) With neat diagram discuss the function of operational amplifier as differentiator. $2\frac{1}{2}$
- (E) Calculate the output of an operational amplifier having CMRR = 100 if the two inputs are 1 mV and 0.9 mV. The open loop gain of op-amp is 10^5 . $2^{1/2}$
- (F) What is a multistage amplifier ? Derive an expression for overall voltage gain of a three stage amplifier in terms of the individual voltage gains. 2¹/₂

EITHER

2. (A) Explain acceptance cone and Numerical Aperture of an optical fiber. Derive an expression for Numerical Aperture for a step index optical fiber in terms of refractive index of core and relative refractive index difference between the core and the cladding.

NXO-20501

(Contd.)

 $2^{1/2}$

[Maximum Marks : 50

www.rtmnuonline.com

(B)	(i)	What is dispersion in optical fiber ? What are various mechanisms responsible for pulse							
		in optical fibers.	3						

- (ii) An optical power of 1 mW is launched into an optical fiber of length 100 m. If the power emerging from the other end is 0.3 mW, calculate the attenuation loss per unit length.
 OR
- (C) State different types of optical fibers based on refractive index profile and explain step index optical fiber. $2\frac{1}{2}$

(D) Explain various types of losses associated with optical fiber.

- (E) In an optical fiber, the core material has refractive index 1.6 and refractive index of clad material is 1.3. What is the value of critical angle ? Also calculate the value of angle of acceptance cone. 2¹/₂
- (F) What are advantages of optical fiber communication over other modes of signal communication ? Give at least five points.
 2¹/₂

EITHER

3.	(A)	Explain	the	need	for	modulation	in	communication.	Derive	the	voltage	equation	for	an	amplitude
		modulat	ed w	vave.											5

- (B) (i) Derive an expression for total power contained in an amplitude modulated wave. 3
 - (ii) An AM transmitter is to deliver a total power of 100 W to an antenna. The modulation is to be 100%. Determine the power contained in the carrier frequency.

OR

- (C) Define modulation factor. Show that percentage modulation is given by $\frac{V_{c(max)} V_{c(min)}}{V_{c(max)} + V_{c(min)}}$. 2¹/₂
- (D) In FM, the signal is given by $e_s = 15 \cos 1000 \pi t$ and the carrier by $e_0 = 1000 \sin 2 \times 10^8 \pi t$, the coefficient of modulation $K_t = 60,000$. Find out frequency deviation and modulation index. $2^{1/2}$
- (E) What are merits and demerits of frequency modulation ? $2\frac{1}{2}$
- (F) Discuss the frequency spectrum of frequency modulated wave. What are significant side bands?

EITHER

(A)	wn	at is a full adder ? Draw the circuit diagram of a full	adder and explain its working	g with truth table.
				5
(B)	(i)	State De-Morgan's theorems and prove them.		3
	(ii)	Applying Boolean algebra show that :		
		$(AB + C) \cdot (AB + D) = AB + CD.$	235	2
		85	85	
)—205	01	2		NKT/KS/17/5203
	(A) (B))—205	(A) what (B) (i) (ii)	 (A) what is a full adder ? Draw the circuit diagram of a full (B) (i) State De-Morgan's theorems and prove them. (ii) Applying Boolean algebra show that : (AB + C) • (AB + D) = AB + CD. 20501 2 	(A) what is a full adder ? Draw the circuit diagram of a full adder and explain its working (B) (i) State De-Morgan's theorems and prove them. (ii) Applying Boolean algebra show that : $(AB + C) \cdot (AB + D) = AB + CD.$ 2

21/2

 $2^{1/2}$

www.rtmnuonline.com

OR

- (C) What is an octal number system ? Explain with an example how an octal number can be converted into a decimal number. $2\frac{1}{2}$
- (D) What is an Exclusive OR gate ? Draw logic diagram of EX-OR gate using basic gates and explain its working with truth table. 2¹/₂
- (E) Convert the decimal number 19.638 into binary equivalent.
- (F) What are Binary Codes ? State advantages of 8421 BCD code (any **THREE**). $2\frac{1}{2}$

5. Solve any **TEN** :—

- (i) State any two characteristics of an ideal operational amplifier.
- (ii) Give two applications of integrator circuits.
- (iii) In a negative feedback amplifier gain without feedback is A = 100, $\beta = 0.04$ and $V_i = 50$ mV. What is the gain with feedback.
- (iv) Why refractive index of core material is greater than cladding material in an optical fiber ?
- (v) Define critical angle.
- (vi) In an optical fiber, the refractive index of core is 1.50 and cladding is doped to give relative refractive index difference of 0.0005. What is refractive index of cladding ?
- (vii) What is meant by carrier swing in frequency modulation ?
- (viii) State at least two limitations of amplitude modulation.
- (ix) A sinusoidal carrier voltage of 80 volts amplitude and 1 MHz frequency is amplitude modulated by sinusoidal voltage of frequency 5 KHz producing 50% modulation. Calculate the amplitude of lower and upper side bands.

3

- (x) What is a nibble ?
- (xi) Give the truth table of NAND gate.
- (xii) Write 2's complement of 1011.

1×10=10

21/2

835

335

NKT/KS/17/5203