IMPORTANT FORMULA SHEET FOR PHYSICS MHT CET

CHAPTER:- ELECTRIC CHARGES & FIELDS

COMPONENT/PARAMETER THEOREM/PRINCIPLE/CONDITION	FORMULA(S)	SI UNIT(S)
1) Electric Charge Q or q	$q = ne = it = rac{V}{r} \cdot t = rac{W}{v} OR rac{ec{F}}{ec{E}}$	C
2) Electric Field E	$E = q.V = \frac{d\emptyset}{dA} = \frac{Kq}{r^2} = \frac{\sigma}{\varepsilon_0}$	N/C
3) Linear Charge Density	$\lambda = \frac{Q}{L} = \frac{dQ}{dl}$	C/m
4) Surface Charge Density	$\sigma = \frac{Q}{A} = \frac{dQ}{dA}$	C/m ²
5) Volume Charge Density	$\rho = \frac{Q}{V} = \frac{dQ}{dV}$	C/m ³
6) Electric Flux	$\phi = \int E.da = \vec{E}.\vec{A} = E.ACos\theta$	Nm²/C
7) Gauss Theorem	$\emptyset = \int E da = q/\varepsilon_0$	Nm²/C
8) Electric Force	$F = \frac{q1.q2}{4\pi\varepsilon_0 r^2}$	N
9) Torque	au = p X E = p. Esin heta	Nm
10) Electric Dipole Moment	p = q. 2l = q. d	C-m
11) Acceleration of charged particles	$a = \frac{F}{m} = \frac{qE}{m}$	m/s ²
12) Electric Field due to Axial Line	$E_{axial} = \frac{2\vec{P}}{4\pi\varepsilon_0 x^3}$	N/C
13)) Electric Field due to Equitorial Line	$E_{equitorial} = \frac{\vec{P}}{4\pi\varepsilon_0(x^2 + a^2)^{\frac{3}{2}}}$	N/C

CHAPTER:- ELECTROSTATIC POTENTIAL & CAPACITANCE

14) Electric Potential	$V = \frac{Kq}{r} = \frac{q}{4\pi\varepsilon_0 r}$	Volt
15) Capacitance	$C = \frac{q}{V}$	F

16) Parallel plate Capacitor	$C = \frac{\varepsilon_0 A}{d} = \frac{k\varepsilon_0 A}{d}$	F
17) Cylindrical Capacitor (R2>R1)	$C = \frac{2\pi\varepsilon_0 l}{\ln\frac{R^2}{R_1}}$ $C = \frac{4\pi\varepsilon_0 R 1 R 2}{R 2 - R 1}$	F
18) Spherical Capacitor (R2>R1)	$C = \frac{4\pi\varepsilon_0 R^3 R^2}{R^2 - R^1}$	F
19) Electric Field of Parallel plate Capacitor	$E=\frac{\sigma}{\varepsilon_0}=\frac{q}{A\varepsilon_0}$	N/C
20) Electric Field of Cylindrical Capacitor (R2>R1)	$E=\frac{\lambda}{2\pi\varepsilon_0 R}$	N/C
21) Electric Field of Spherical Capacitor (R2>R1)	$E = \frac{Q}{(4\pi\varepsilon_0 R^2)}$	N/C
22) Force between plates of the Capacitor	$F = \frac{Q}{2k\varepsilon_0 A}$	N
23) Energy stored in the Capacitor	$E=\frac{QV}{2}=\frac{CV^2}{2}=\frac{Q^2}{2C}$	N/C
24) Force per unit area between the plates	$F=\frac{\sigma^2}{2k\varepsilon_0}$	N
25) Resultant Electric Field at corner of a triangular plane	$E = \sqrt{Ea^2 + Eb^2 + 2Ea.EbCos\theta}$	N/C
26) Resultant Electric Field due to n charges	$E = \sum_{i=1}^{n} Ei$	N/C
27) Resultant Electric Potential due to n charges	$E = \sum_{i=1}^{n} Ei$ $V = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{qi. q(i+1)}{ri}$ $d = \frac{V}{E}$	V
28) Distance between the parallel plate Capacitor	$d = \frac{V}{E}$	m
29) Effective Series Capacitance	$Cs = \sum_{i=1}^{n} \frac{1}{Ci}$	F
30) Effective Parallel Capacitance	$Cp = \sum_{i=1}^{n} Ci$	F
31) Electric potential at the centre of a cube	$V = \frac{4q}{\sqrt{3}\pi\varepsilon_0 l}$	V
32) For charged isolated conducting Sphere	$C = 4\pi\varepsilon_0 R \& V = \frac{Q}{4\pi\varepsilon_0 R}$	F

33) Effective Potential of n capacitors connected in series across a battery	$V = \frac{\sum_{i=1}^{n} Ci. Vi}{\sum_{i=1}^{n} Ci}$	V
34) Relation between Dielectric const K with Capacitance & Electric Field	$K = \frac{C}{C_0} = \frac{E_0}{E_0 - E_p} = 1 + \chi$ Here, E ₀ is uniform E. field & E _p is Polarising Field	NA
35) Polarization	$\overline{P} = \varepsilon_0 \chi \overline{E}$, χ – Electric Susceptibility \overline{E} – Resultant E – field	N/C
<i>36) Effect of Dielectrics in Capacitors</i>	$C = \frac{K\varepsilon_0 A}{K(d-t)+t} = \frac{K\varepsilon_0 A}{d}, [t = d]$ Here, d-separation b/w plates, t-thickness of dielectric	F
37) Effective Energy stored in Capacitors connected in series	$U = \frac{Q^2}{2} \sum_{i=1}^n \frac{1}{Ci}$	J
38) Effective Energy stored in Capacitors connected in parallel	$U = \frac{Q^2}{2} \sum_{i=1}^n \frac{1}{Ci}$ $U = \frac{V^2}{2} \sum_{i=1}^n Ci$	J
39) Electric Potential Difference	$\Delta V = V_B - V_A = \frac{W_{AB}}{q_0} = -\int_A^B \vec{E} \cdot \vec{dl}$	JC ⁻¹ or NmC ⁻¹ or V
40) Electric Potential due to point charge	$V=\frac{1}{4\pi\varepsilon_0}.\frac{q}{r}$	V
41) Electric Potential due to group of point charges	$V = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{r_i}$	V
42) Electric Potential due to an Electric Dipole	$V = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{r_i}$ $V = \frac{p\cos\theta}{4\pi\varepsilon_0 r^2}$	V
43) Electric Potential on Axial line of Dipole	$V=rac{P}{4\piarepsilon_0 r^2}$, $ heta=0^\circ$	V
44) Electric Potential on Equitorial line of Dipole	$V = 0, \boldsymbol{ heta} = 90^\circ$	V
45) Electric Potential due Charged Sphere on surface and inside sphere	$V = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{R}$	V
<i>46) Electric Potential at points outside the sphere</i>	$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}, r > R$	V
47) Electrostatic Potential Energy	$U = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q1.q2}{r}$	J
48) Potential energy of Dipole in Uniform Electric field	$U = -\overrightarrow{P}.\overrightarrow{E}$	J

49) Work done & potential energy relation	$W = \Delta U = U_f - U_i = -P.E(Cos\theta_f - Cos\theta_i)$	J
relation		

CHAPTER- CURRENT ELECTRICITY

50) Electric Current	$I = \frac{dQ}{dt} = \frac{V}{R} = \overrightarrow{v_d} \cdot neA$	A
51) Drift Velocity	$\overrightarrow{\nu_d} = \frac{-e\overrightarrow{E}}{m} \cdot \tau$	m/s
52) Mobility	$\mu = \frac{\overrightarrow{v_d}}{E} = \frac{e\tau}{m}$	m²/V-s
53) Resistance	$R = \frac{V}{I} = \frac{\rho L}{A} = \frac{Ml}{ne^2 A\tau}$	Ω
54) Resistivity Vs Conductivity	$\sigma = \frac{1}{\rho}$	Sm ⁻¹
55) Conductance	$G=rac{1}{R}$	Ω ⁻¹ or mho
56) Effect of temperature on Resistance and Resistivity	$\alpha = \frac{R_f - R_i}{R_i(t_f - t_i)}, \alpha_r = \frac{\rho_f - \rho_i}{\rho_i(t_f - t_i)}$	<i>K</i> ¹
57) Current Density	$j = \frac{I}{A} = \sigma. E = \frac{E}{\rho} = \frac{V}{\rho l}$	Am ⁻²
58) Resistors in Series	$R_s = \sum_{i=1}^n R_i$	Ω
59) Resistors in Parallel	$\frac{1}{R_p} = \sum_{i=1}^{n} \frac{1}{R_i}$	Ω
60) Discharging of a cell with internal resistance r	V = E - Ir	V
61) Charging of a cell with internal resistance r	V = E + Ir	V
62) Effective Potential of Parallel combination of cells	$V = \frac{V1.r2 + V2.R1}{r1 + r2} = \frac{\sum_{i=1}^{n} Ei.rn}{\sum_{i=1}^{n} ri}$	V
63) Effective internal resistance of Parallel combination of cells	$r = \frac{r1.r2}{r1+r2}$	Ω
64) KVL or Loop Law	$\sum V = \sum IR$	V

65) KCL or Junction Law	$\sum i = 0$	A
66) Wheatstone Bridge condition	$\frac{P}{Q} = \frac{R}{S}$	NA
67) Meter Bridge Condition	$\frac{R}{S} = \frac{l}{100 - l}$	NA
68) Potential Gradient	$K = \frac{V}{l}$	V/m
69) Potentiometer for gradient measurement	$K = \frac{1}{l} \cdot \left(\frac{V}{R+r}\right) \cdot r$	V/m
70) Potentiometer for internal resistance measurement	$r = \left(\frac{l1}{l2} - 1\right).R$	Ω
71) Potentiometer for comparision of EMF's	$\frac{E1}{E2} = \frac{l1}{l2}$	NA
72) Heating Effect of current or Joule's Heating Effect	$H = P.t = Vi.t = i^2 R.t = \frac{V^2}{R}.t$	J
73) Electric Power	$P = \frac{W}{t} = Vi = i^2 R = \frac{V^2}{R}$	W
74) Horse Power & Watt relation	1HP = 746W	Conv
75) Electric Energy	E = P.t = H	J
76) Commercial Unit of Energy	$1 KWh = 1000Wh = 3.6 * 10^6 J$	Conv
77) Max current drawn by cell	$I = \frac{V}{R+r}$	A

CHAPTER: MOVING CHARGES & MAGNETISM

78) Magnetic Force	$\vec{F} = q(\vec{v} X \vec{B}) = qvB Sin\theta$	N
79) Magnetic Flux	$\phi = \overrightarrow{B}.\overrightarrow{A} = BA Cos\theta$	Wb or Tm ²
80) Biot Savart Law	$dB = rac{\mu_0}{4\pi} \cdot rac{i.dlSin heta}{r^2}$	Т
81) Biot Savart Law Vectorially	$dB = \frac{\mu_0 i}{4\pi} \cdot \frac{\vec{dl} X \vec{r}}{r^3}$	Т
82) Magnetic field at distance d due to circular coil carrying current I having radius r	$B=rac{\mu_{0}i}{4\pi}.rac{2\pi r^{2}}{\left(r^{2}+d^{2} ight)^{rac{3}{2}}}$	Τ

83) Magnetic field at centre of	u și	T
circular coil carrying current I	$B = N \cdot \frac{\mu_0 \iota}{2r}$,
having radius r	2r	
84) Ampere's Law	$\int \rightarrow \rightarrow$	NA
ot Ampere 3 Law	$\oint \vec{B}.\vec{dl} = \mu_0 i$	
85) Magnetic field due to solenoid	$B=rac{\mu_0Ni}{l}=\mu_0ni$, $n=rac{N}{l}$	T
86) Magnetic field at edges of	$u_0 N i u_0 n i$	Τ
short distance solenoid	$B=\frac{\mu_0 N i}{2l}=\frac{\mu_0 n i}{2}$	
87) Magnetic field due to toroid	N N	Τ
with average radius r	$B=\mu_0 N i$, $n=rac{N}{2\pi r}$	
88) Force of charged particle in	$\vec{F} = q.\vec{E}$	N
Electric field	r = q. L	
89) radius of cyclotron in	$\frac{1}{\sqrt{2m}} \frac{VE}{VE}$	m
magnetic field	$r=rac{mv}{qB}=rac{\sqrt{2m.KE}}{qB}=rac{mv}{Be}$	
90) potential difference of	$r^2 a^2 B^2$	V
cyclotron in magnetic field	$V = \frac{r^2 q^2 B^2}{2mq}$	
91) Time period of cyclotron	$_{T}$ $2\pi m$	S
	$T=\frac{2\pi m}{qB}$	
92) Cyclotron Frequency	qB	Hz
	$v = rac{qB}{2\pi m}$	
93) Force of current carrying	$\vec{F} = i.(\vec{l} X \vec{B}) = Bil Sin\theta$	N
conductor in Magnetic field	$\mathbf{r} = \mathbf{i}.(\mathbf{i} \mathbf{X} \mathbf{B}) = \mathbf{B} \mathbf{i} \mathbf{i} \mathbf{S} \mathbf{i} \mathbf{i} 0$	
94) Force between two parallel	μ_0 l. i1. i2 μ_0 2. i1. i2	N
conductors carrying currents i1 &	$F = \frac{\mu_0}{2\pi} \cdot \frac{l \cdot i1 \cdot i2}{r} = \frac{\mu_0}{4\pi} \cdot \frac{2 \cdot i1 \cdot i2}{r}$	
i2 with separation r		
95) Torque experienced by current carrying loop in magnetic field	$\vec{\tau} = \vec{M} X \vec{B} = M.B Sin\theta = NIAB Sin\theta$	Nm
96) Magnetic dipole of an atom	eh	J/T
so, magnetie apole of an atom	$M=n.rac{eh}{4\pi m}=n.\mu_B$	5,71
	$4\pi m$ $\mu_{\rm T} \rightarrow Bohr magneton = 9.27 \times 10^{-24} L/T$	
97) Current in MCG	$\frac{\mu_B}{K}$	A
	$\mu_B \rightarrow Bohr \ magneton = 9.27 \ X \ 10^{-24} J/T$ $i = \frac{K}{NAB} \cdot \alpha$	
98) Current sensitivity of	α NAB	°/A
Galvanometer	$I_s = \frac{\alpha}{i} = \frac{NAB}{K}$	
99) Voltage sensitivity of	α NAB	°/V
Galvanometer	$V_s = \frac{\alpha}{V} = \frac{NAB}{KR}$	
100) Conversion of Galvanometer	<i>V V</i>	NA
to Voltmeter	Total $R = R + G$, $I_g = \frac{V}{R+G}$, $R = \frac{V}{I_g} - G$	
101) Conversion of Galvanometer	I_a	ohm
to Ammeter	$S = \frac{I_g}{I - I_g} \cdot G$	
	• • <i>g</i>	

CHAPTER: MAGNETISM & MATTER

102) Magnetic Field strength at a point due to Bar Magnet	$B = \frac{\mu_0}{4\pi} \cdot \frac{M}{r^3} \cdot \sqrt{1 + 3\cos^2\theta}$	Τ
103) Magnetic Field along axial line of short Bar Magnet	$B = \frac{\mu_0}{4\pi} \cdot \frac{2Mr}{4\pi(r^2 - l^2)^3}$	T
104) Magnetic Moment	M = m.2l	
105) Magnetic Field along 7quatorial line of short Bar Magnet	$B = \frac{\mu_0}{4\pi} \cdot \frac{M}{4\pi (r^2 + l^2)^{\frac{3}{2}}}$	T
106) Torque on Magnetic Dipole in Uniform Magnetic Field	au = MB Sin heta	Nm
107) Time period of oscillation of Bar magnet in Uniform Magnetic Field	$T = 2\pi \sqrt{\frac{I}{MB}}$ $U = -\overrightarrow{M}. \overrightarrow{B} = -MB \cos\theta$	S
108) Potential Energy of Dipole due to current loop in Magnetic Field	$U = -\overrightarrow{M}.\overrightarrow{B} = -MB \cos\theta$	J
109) Workdone in rotating Magnetic Field	$W = \Delta U = -MB(Cos\theta 2 - Cos\theta 1)$	J
110) Angle of Dip Vs Horizontal & Vertical components of Earth's Magnetic Field	$B_{V} = B Sin\delta, \qquad \frac{B_{V}}{B_{H}} = Tan\delta,$ $B = \sqrt{B_{V}^{2} + B_{H}^{2}}$	°, T
111) Atom as Magnetic Dipole	$B_V = B Stho, \qquad \overline{B_H} = T u h o,$ $B = \sqrt{B_V^2 + B_H^2}$ $M = n. \frac{eh}{4\pi m} = n. \mu_B$ $\mu_B \rightarrow Bohr magneton = 9.27 X 10^{-24} J/T$	Am ⁻²
112) Relative Permeability	$\mu_r = \frac{B}{B_0} = \frac{\mu}{\mu_0}$	WbA ⁻¹
113) Magnetizing Force or Magnetic Intensity	$H = ni = \frac{B}{\mu}$	Am ⁻¹
114) Intensity of Magnetization	$\vec{I} = rac{\vec{M}}{V}, I = rac{m}{A}$	Am ⁻¹

115) Magnetic Susceptibility	$\chi = \frac{I}{H}$	NA
116) Curie's Law	$\chi_m = \frac{I}{H} = \frac{C}{T}$	NA

CHAPTER: ELECTROMAGNETIC INDUCTION

117) Magnetic Flux		Tm ²
118) Faraday's Law of E I	$\begin{aligned} \varepsilon \propto \frac{d\phi}{dt}, \varepsilon &= -\frac{d\phi}{dt} = -\frac{d}{dt}(BNACos\omega t) \\ &= BNA\omega Sin\omega t \\ &= \varepsilon_0 Sin\omega t \end{aligned}$	V
119) Lorentz Force	$F = q(\vec{E} + \vec{v} X \vec{B})$	N
120) Self Induction		Tm²,V,H
121) Mutual Inductance	$ \begin{split} \phi_2 &= M_{21}i_1, \qquad \varepsilon_2 = \frac{d\phi_2}{dt} so \ \varepsilon_2 = M_{21}.\frac{di_1}{dt} \\ \phi_1 &= M_{12}i_2, \varepsilon_1 = \frac{d\phi_1}{dt} so \ \varepsilon_1 = M_{12}.\frac{di_2}{dt} \\ M &= \frac{\mu_0 N_1.N_2.A}{l} = \mu_0 n_1.n_2.A.l \end{split} $	Tm ² ,V
122) Mutual Inductance of two long Solenoids	$M = \frac{\mu_0 N_1 . N_2 . A}{l} = \mu_0 n_1 . n_2 . A. l$	Н
123) Energy stored in current carrying Inductor	$U=\frac{Li^2}{2}$	J
124) Emf induced by moving rectangular loop in Uniform magnetic field	$\varepsilon = Blv = iR$	V
125) Power consumed by the rod suspended in Magnetic field	P = F.v = Bilv	W
126) Power lost / loss	$P = i^{2}R = V = \frac{dW}{dt}$ $W = F. d = qvBd$	W
127) Workdone by moving rectangular strip by a distance d in uniform magnetic field	W = F.d = qvBd	J
128) Force required to move a rod in uniform magnetic field	$F = \frac{B^2 l^2 v}{R}$	N
129) EMF induced by a rod rotating in uniform circular motion with angular velocity in uniform magnetic field.	$\varepsilon = \frac{B\omega l^2}{2}$	V

CHAPTER: ALTERNATING CURRENT

120) Instantan com AC annual	I/	A Dadis
130) Instantaneous AC current	$I = I_m Sin\omega t$, $\omega = 2\pi m$, $I_m = \frac{V_m}{R}$	A, Rad/s
131) Instantaneous AC EMF	$E = E_m Sin\omega t, \qquad \omega = 2\pi v$	V, Rad/s
132) Average AC current	$I_{av} = \frac{2I_m}{\pi} = 0.636I_m$	A
133) RMS AC current	$I_{av} = \frac{2I_m}{\pi} = 0.636I_m$ $I_{rms} = \frac{I_m}{\sqrt{2}} = 0.707I_m$	A
134) RMS AC Voltage	$V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707V_m$	V
135) AC through Resistor	V = IR	V
136) AC through Inductor	$V = L. \frac{dI}{dt}, \frac{V_{rms}}{I_{rms}} = X_L = \omega L = 2\pi \nu L$	V,ohm
137) AC through Capacitor	$I = C.\frac{dV}{dt}, \frac{V_{rms}}{I_{rms}} = X_C = \frac{1}{\omega C} = \frac{1}{2\pi \nu C}$	A,ohm
138) AC through series LCR Ckt	$V = V_m Sin\omega t, I = I_m Sin(\omega t - \emptyset)$ $X_L > X_C, \frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}} = Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\emptyset = \tan^{-1}(\frac{X_L - X_C}{R})$	V,A,ohm,°
139) Resonance of series LCR Ckt	Condition $X_L = X_C$, then $f = \frac{1}{2\pi\sqrt{LC}}$, $I_{rms} = \frac{V_{rms}}{R}$, $P_{loss} = {I_m}^2 R$	Hz, A,W
140) Quality Factor	$Q = \frac{\omega L}{R}$	NA
141) Power Dissipation in AC Ckt	$P_{av} = V_{rms} I_{rms}. Cos \phi$	W
142) LC Oscillator Ckt	$U = \frac{q_m^2}{2C}$	J
143) Magnetic Energy in Inductor	$U_B = \frac{LI_m^2}{2}$	J
144) Transformer ratio	$\frac{N_s}{N_p} = \frac{V_s}{V_p} = k, \text{ if } k < 1 \text{ it's step down}$ $if K > 1 \text{ it's step up transformer}$ $\frac{I_p}{I_s} = \frac{V_s}{V_p} = \frac{N_s}{N_p},$ $Eficency \eta = \frac{power o/p}{power i/p} X100$	NA

CHAPTER: RAY OPTICS AND OPTICAL INSTRUMENTS

Law of Reflection	<i>i</i> = <i>r</i>	0
Law of refraction	$\frac{Sin i}{Sin r} = n = n_{21} = \frac{1}{n_{12}} = \frac{v_1}{v_2}$ $f = \frac{R}{2}, \qquad \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	NA
Mirror Equation and relations	$f = \frac{R}{2}, \qquad \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	m
Focal length and Radius of curvature relation	$f = \frac{R}{2}$	ст
Linear Magnification of Mirror	$m = \frac{h'}{h} = -\frac{v}{u}$	NA
Linear Magnification of lens	$m = \frac{h'}{h} = \frac{v}{u}$	NA
Mirror Magnification in terms of focal length	$m=\frac{f}{f-u}$	NA
Critical Angle	Sin $i_c = n_{21} = \frac{v_1}{v_2}$	0
Critical Angle relation with Refractive Index μ	$i_c = Sin^{-1}\left(\frac{1}{\mu}\right)$	0
Time taken t by light in optical fibre to travel a distance of x cm is	$t=\frac{\mu x}{C}$, here $C=3 \times 10^8 m/s$	sec
Critical Angle relation with relative refractive index	$Sin \ i_c = n_{21} = \frac{v_1}{v_2}$	0
Object and image distance of curved spherical surface having radius R	$\frac{n_2}{v} - \frac{n_1}{v} = \frac{n_2 - n_1}{R}$	NA
Lens Makers Formula Refraction at spherical surface	$\frac{1}{f}(n_{21}-1) = \frac{1}{R_1} - \frac{1}{R_2}$	m
Lens Formula and relations	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}, m = \frac{v}{u} = \frac{h^{l}}{h}$	m
Power of lens	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}, m = \frac{v}{u} = \frac{n}{h}$ $P = \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$	D
Effective Focal length of lens combination	$\frac{1}{f_{eff}} = \sum_{i=1}^{n} \frac{1}{f_i}$ $P_{eff} = \sum P_i$	m
Effective Power of lens combination	$P_{eff} = \sum P_i$	D
Effective magnification of lens combination	$m_{eff} = \prod m_i$	NA
Prism Relations and Angle of prism	$r = \frac{A}{2}, i = \frac{A + D_m}{2}, D_m = 2i - A$ $\mu = \frac{Sin(A + \delta_m)}{Sin(\frac{A}{2})}$	0
Least distance of distinct vision	D = 25 cm	ст
Near point of the eye	N = 2.5cm	ст

Microscope relations and formula	$m = m_0 \cdot m_e = \frac{L}{f_0} X \frac{D}{f_e}$	NA
Telescope relations and formula	$m = \frac{f_0}{f_e}$	NA
Microscope maximum magnification	$M_{max} = \left(1 + \frac{D}{f_e}\right),$	NA
Microscope magnification using image and object distances	$ mD = \frac{vo}{uo}(1 + \frac{D}{fe})$	NA
Effective Magnification or Total Magnification of Microscope	$m = m_o \times m_e$	NA
For Plane mirror	u = v	ст

CHAPTER: WAVE OPTICS

Light wavelength, velocity, refractive index and frequency relation	$n_1 = \frac{C}{v_1}, n_2 = \frac{C}{v_2}, n_1. Sin \ i = n_2. Sin \ r$	
relation	$\frac{\lambda_1}{\lambda_2} = \frac{\nu_1}{\nu_2}$	
Critical angle relation with relative refractive index	$\frac{\overline{\lambda_1}}{\lambda_2} = \frac{v_1}{v_2}$ $Sin \ i_c = \frac{n_2}{n_1}$	NA
Doppler Shift	$\frac{\Delta v}{v} = \frac{-v_{radial}}{C}$	NA
Path Difference	$\Delta S = \frac{n\lambda}{2}, \ (n = 0, 1, 2, 3,)$ for Constructive Interference	m
	$\Delta S = \left(n + \frac{1}{2}\right) \lambda$, $(n = 1, 2, 3 \dots)$ for Destructive Interference	
Intensity Relation	$I = 4 \log(\cos^2 \frac{\emptyset}{2})$	
Phase difference	$\phi = \frac{2\pi}{\lambda} X \Delta S$	0
YDSE	$\Delta S = \frac{xd}{D}, x_n = \frac{n\lambda D}{d}, (n = 0, \pm 1, \pm 2) C.I$ $x_n = \left(n + \frac{1}{2}\right) \cdot \frac{\lambda D}{d}, (n = \pm 1, \pm 2) D.I$	m
Fringe width in YDSE	$\beta = x_{n+1} - x_n = \frac{\lambda D}{d}$	m
For single slit diffraction	$\theta = \frac{\lambda}{a}, \min(a \otimes \theta) = \frac{n\lambda}{a} (n = \pm 1, \pm 2,)$ $\max(a \otimes \theta) = \left(n + \frac{1}{2}\right) \frac{\lambda}{a} (n = 0, \pm 1, \pm 2)$ $\frac{2}{3} \cdot a \times \theta = \lambda$	m
Radius of central bright region formed by image of convex lens	$r = \frac{1.22f\lambda}{2a} = \frac{0.16f\lambda}{a}$	m

Frensel Distance	$Z = \frac{a^2}{\lambda}$	m
Polarisation Vs λ	$K = \frac{2\pi}{\lambda}$	m
Intensity due to two polaroids	$I = I_0 \cos^2 \theta$	Lumen
Brewster's Angle	$\mu = \frac{Sin i_B}{Cos r} = \frac{Sin i_B}{Cos(\frac{\pi}{2} - i_B)} = tan i_B$	0