Part - III
 MATHEMATICS, Paper - I (A)

(English Version)
Note: This question paper consists of THREE Sections A, B and C. SECTION - A
I. Very Short Answer Type Questions.
(i) Answer ALL questions.
(ii) Each question carries TWO marks.

1. If $f: R\{0\} \rightarrow R$ is defined by $f(x)=x^{3}-\frac{1}{x^{3}}$, then show that
$f(x)+f\left(\frac{1}{x}\right)=0$
2. Find the domain of the real valued function $f(x)=\frac{1}{\left(x^{2}-1\right)(x+3)}$
3. If $\left(\begin{array}{lc}x-3 & 2 y-8 \\ z+2 & 6\end{array}\right)=\left(\begin{array}{rc}5 & 2 \\ -2 & a-4\end{array}\right)$, then find the value of
4. If ω is complex (non-real) cube root of 1 , then show that -

$$
\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|=0
$$

195136-0166

6. Find the vector equation of the line passing through the point $2 \hat{i}+3 \hat{j}+\hat{k}$ and parallel to the vector $4 \hat{i}-2 \hat{j}+3 \hat{k}$.
7. If the vector $2 \hat{i}+\lambda \hat{j}-\hat{k}$ and $4 \hat{i}-2 \hat{j}+2 \hat{k}$ are perpendicular to each other, find λ.
8. Prove that $\sin 78^{\circ}+\cos 132^{\circ}=\frac{\sqrt{5}-1}{4}$
9. Find $\sin ^{2} 82 \frac{1^{\circ}}{2}-\sin ^{2} 22 \frac{1^{\circ}}{2}$
10. Show that $\tanh ^{-1}\left(\frac{1}{2}\right)=\frac{1}{2} \log _{e}^{3}$

SECTION - B
$5 \times 4=20$
II. Short Answer Type Questions.
(i) Answer ANY FIVE questions.
(ii) Each question carries FOUR marks.
11. If $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $E=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, then show that $(a I+b E)^{3}=a^{3} I+3 a^{2} b E$, where I is unit matrix of order 2.
12. $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors. Prove that the following four points are coplanar $-\overline{\mathbf{a}}+4 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}}, 3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}}$, $-3 \bar{a}+8 \bar{b}-5 \bar{c},-3 \bar{a}+2 \bar{b}+\bar{c}$.
13. Prove that for any three vectors $\bar{a}, \bar{b}, \bar{c}$
14. Prove that $\tan 70^{\circ}-\tan 20^{\circ}=2 \tan 50^{\circ}$
15. Solve that equation $\sin x+\sqrt{3} \cos x=\sqrt{2}$
16. Prove that $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
17. In $\triangle A B C$, if $a: b: c=7: 8: 9$, then find $\cos A: \cos B: \cos C$
III. Long Answer Type Questions.
(i) Answer ANY FIVE questions.
(ii) Each question carries SEVEN marks.
18. If $A=\{1,2,3\}, B=\{\alpha, \beta, \gamma\} C=,\{p, q, r\}$ and $f: A \rightarrow B$, $g: B \rightarrow C$ are defined by $f=\{(1, \alpha),(2, \gamma),(3, \beta)\}, g=\{(\alpha, q)$, $(\beta, r),(\gamma, p)\}$, then show that f and g are bijective functions and $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
19. Using mathematical induction, show that

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots \text { upto } n \text { terms }=\frac{n}{3 n+1} \forall n \in N .
$$

20. Show that

$$
\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a)
$$

21. Solve $x+y+z=1,2 x+2 y+3 z=6, x+4 y+9 z=3$ by using matrix inversion method.
22. If $\bar{a}=2 \hat{i}+\hat{j}-3 \hat{k}, \bar{b}=\hat{i}-2 \hat{j}+\hat{k}, \bar{c}=-\hat{i}+\hat{j}-4 \hat{k}$ and

$$
\overline{\mathrm{d}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \text { then compute }|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})|
$$

23. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle, prove that $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$
24. If $r_{1}=2, r_{2}=3, r_{3}=6$ and $r=1$, prove that $a=3, b=4$ and $\mathrm{c}=5$.
