## **BOARD QUESTION PAPER : MARCH 2024** MATHEMATICS AND STATISTICS

#### Time: 3 Hrs.

#### Max. Marks: 80

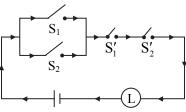
The question paper is divided into FOUR sections.

- Section A: Q. 1 contains Eight multiple choice type of questions, each carrying Two marks. Q. 2 contains Four very short answer type questions, each carrying One mark.
   Section B: Q. 3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) Section C: Q. 15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- (4) Section D: Q. 27 to Q. 34 contain Eight long answer type questions, each carrying Four marks. (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of question, only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

#### SECTION – A

| Q.1.  |                                                                                                                     |                      |                                                                                           |                                       |                                          |          |                                 | [16] |
|-------|---------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|----------|---------------------------------|------|
| ĺ.    | The dual of statement t<br>(A) $c \land (p \lor q)$                                                                 | $\vee$ (p $\vee$ (B) | $\begin{array}{c} q) \text{ is } \underline{\qquad} \\ c \wedge (p \wedge q) \end{array}$ | (C)                                   | $t \wedge (p \wedge q)$                  | (D)      | $t \wedge (p \vee q)$           | (2)  |
| ii.   | The principal solutions                                                                                             | of the               | equation $\cos \theta = \frac{1}{2}$ ar                                                   | e                                     |                                          |          |                                 |      |
|       | (A) $\frac{\pi}{6}, \frac{5\pi}{6}$                                                                                 |                      |                                                                                           |                                       |                                          | (D)      | $\frac{\pi}{3}, \frac{2\pi}{3}$ | (2)  |
| iii.  | If $\alpha$ , $\beta$ , $\gamma$ are direction a                                                                    |                      |                                                                                           | $\beta = 45$                          | $\gamma^{\circ}$ , then $\gamma = $      | <u>·</u> | (00 1000                        |      |
|       | (A) 30° or 90°                                                                                                      | (B)                  | 45° or 60°                                                                                | (C)                                   | 90° or 130°                              | (D)      | 60° or 120°                     | (2)  |
| iv.   | The perpendicular distance of the plane $\bar{r} \cdot (3\hat{i} + 4\hat{j} + 12\hat{k}) = 78$ , from the origin is |                      |                                                                                           |                                       |                                          |          |                                 |      |
|       | (A) 4                                                                                                               | (B)                  |                                                                                           | (C)                                   |                                          | (D)      | 8                               | (2)  |
| V.    | The slope of the tangen                                                                                             | t to the             | e curve $x = \sin \theta$ and y                                                           | $v = \cos(2\pi)$                      | $2\theta$ at $\theta = \frac{\pi}{6}$ is | ·        |                                 |      |
|       | (A) $-2\sqrt{3}$                                                                                                    | (B)                  | $\frac{-2}{\sqrt{3}}$                                                                     | (C)                                   | -2                                       | (D)      | $-\frac{1}{2}$                  | (2)  |
|       | $\frac{\pi}{4}$                                                                                                     |                      |                                                                                           |                                       |                                          |          |                                 |      |
| vi.   | If $\int_{\frac{-\pi}{4}}^{4} x^3 . \sin^4 x  dx = k$ then                                                          | k =                  | ·                                                                                         |                                       |                                          |          |                                 |      |
|       | (A) 1                                                                                                               | (B)                  | 2                                                                                         | (C)                                   | 4                                        | (D)      | 0                               | (2)  |
| vii.  | The integrating factor of                                                                                           | of linea             | r differential equation                                                                   | $x \frac{\mathrm{d}y}{\mathrm{d}x} +$ | $-2y = x^2 \log x$ is                    | ·        |                                 |      |
|       | (A) <i>x</i>                                                                                                        | (B)                  | $\frac{1}{x}$                                                                             | (C)                                   | $x^2$                                    | (D)      | $\frac{1}{x^2}$                 | (2)  |
| viii. | If the mean and variance                                                                                            | e of a               | binomial distribution                                                                     | are 18                                | and 12 respectively                      | y, then  | the value of n is               |      |
|       | $\overline{(A)}$ 36                                                                                                 | (B)                  | 54                                                                                        | (C)                                   | 18                                       | (D)      | 27                              | (2)  |

# **Mathematics and Statistics**


| <ul><li>Q.2. Answer the following questions:</li><li>i. Write the compound statement 'Nagpur is in Maharashtra and Chennai is in Tamilnadu' symbolically.</li></ul>                                                           | <b>[4]</b> (1) |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| If the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $p\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear, then find the value of p.                                                                                                 |                |  |  |  |  |  |  |
| iii. Evaluate: $\int \frac{1}{x^2 + 25} dx$                                                                                                                                                                                   | (1)            |  |  |  |  |  |  |
| iv. A particle is moving along X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.                                                 | (1)            |  |  |  |  |  |  |
| SECTION – B                                                                                                                                                                                                                   |                |  |  |  |  |  |  |
| Attempt any EIGHT of the following questions:                                                                                                                                                                                 | [16]           |  |  |  |  |  |  |
| <b>Q.3.</b> Construct the truth table for the statement pattern:<br>$[(p \rightarrow q) \land q] \rightarrow p$                                                                                                               | (2)            |  |  |  |  |  |  |
| <b>Q.4.</b> Check whether the matrix $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ is invertible or not.                                                                                | (2)            |  |  |  |  |  |  |
| <b>Q.5.</b> In $\triangle ABC$ , if a = 18, b = 24 and c = 30 then find the value of $sin\left(\frac{A}{2}\right)$ .                                                                                                          | (2)            |  |  |  |  |  |  |
| <b>Q.6.</b> Find k, if the sum of the slopes of the lines represented by $x^2 + kxy - 3y^2 = 0$ is twice their product.                                                                                                       | (2)            |  |  |  |  |  |  |
| <b>Q.7.</b> If $\bar{a}$ , $\bar{b}$ , $\bar{c}$ are the position vectors of the points A, B, C respectively and $5\bar{a}-3\bar{b}-2\bar{c}=\bar{0}$ , then find the ratio in which the point C divides the line segment BA. | (2)            |  |  |  |  |  |  |
| <b>Q.8.</b> Find the vector equation of the line passing through the point having position vector $4\hat{i} - \hat{j} + 2\hat{k}$ and parallel to the vector $-2\hat{i} - \hat{j} + \hat{k}$ .                                | (2)            |  |  |  |  |  |  |
| <b>Q.9.</b> Find $\frac{dy}{dx}$ , if $y = (\log x)^{x}$ .                                                                                                                                                                    | (2)            |  |  |  |  |  |  |
| <b>Q.10.</b> Evaluate: $\int \log x  dx$ .                                                                                                                                                                                    |                |  |  |  |  |  |  |
| <b>Q.11.</b> Evaluate : $\int_{0}^{\frac{\pi}{2}} \cos^2 x  dx$ .                                                                                                                                                             | (2)            |  |  |  |  |  |  |
| <b>Q.12.</b> Find the area of the region bounded by the curve $y = x^2$ and the lines $x = 1$ , $x = 2$ and $y = 0$ .                                                                                                         | (2)            |  |  |  |  |  |  |
| <b>Q.13.</b> Solve: $1 + \frac{dy}{dx} = \csc(x + y)$ ; put $x + y = u$ .                                                                                                                                                     | (2)            |  |  |  |  |  |  |
| Q.14. If two coins are tossed simultaneously, write the probability distribution of the number of heads.                                                                                                                      | (2)            |  |  |  |  |  |  |

### Attempt any EIGHT of the following questions:

Q.15. Express the following switching circuit in the symbolic form of logic. Construct the switching table:

**SECTION – C** 

**Q.16.** Prove that:  $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$ 



(3)

(3)

[24]

|                                                                                                                                                                                                         | Board Question Paper: I                                                                                                               | March 2024        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>Q.17.</b> In $\triangle ABC$ , prove that: $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2}{a}$                                                                                  | $\frac{a^2+b^2+c^2}{2abc}.$                                                                                                           | (3)               |
| Q.18. Prove by vector method, the angle subtended o                                                                                                                                                     | on a semicircle is a right angle.                                                                                                     | (3)               |
| <b>Q.19.</b> Find the shortest distance between the lines $\bar{\mathbf{r}} = (4)$                                                                                                                      | $(4\hat{i}-\hat{j}) + \lambda(\hat{i}+2\hat{j}-3\hat{k})$ and $\bar{r} = (\hat{i}-\hat{j}-2\hat{k}) + \mu(\hat{i}+4\hat{j}-2\hat{k})$ | $5\hat{k}$ ). (3) |
| <b>Q.20.</b> Find the angle between the line $\mathbf{\bar{r}} = (\hat{i} + 2\hat{j} + \hat{k}) + \hat{k}$                                                                                              | $+\lambda(\hat{i}+\hat{j}+\hat{k})$ and the plane $\bar{r}\cdot(2\hat{i}+\hat{j}+\hat{k})=8$ .                                        | (3)               |
| <b>Q.21.</b> If $y = \sin^{-1}x$ , then show that: $(1 - x^2) \frac{d^2 y}{dx^2} - x \cdot \frac{d}{dx}$                                                                                                | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \; .$                                                                                            | (3)               |
| <b>Q.22.</b> Find the approximate value of $\tan^{-1}(1.002)$ .<br>[Given: $\pi = 3.1416$ ]                                                                                                             |                                                                                                                                       | (3)               |
| <b>Q.23.</b> Prove that: $\int \frac{1}{a^2 - x^2}  dx = \frac{1}{2a} \log \left( \frac{a + x}{a - x} \right) + c$                                                                                      |                                                                                                                                       | (3)               |
| <b>Q.24.</b> Solve the differential equation:<br>$x. \frac{dy}{dx} - y + x \cdot \sin\left(\frac{y}{x}\right) = 0$                                                                                      |                                                                                                                                       | (3)               |
| Q.25. Find k, if<br>$f(x) = kx^{2}(1-x), \text{ for } 0 < x < 1,$ $= 0 \text{ otherwise}$ is the p.d.f. of random variable X.                                                                           |                                                                                                                                       | (3)               |
| <b>Q.26.</b> A die is thrown 6 times, if 'getting an odd num                                                                                                                                            | nber' is success find the probability of 5 successes                                                                                  |                   |
|                                                                                                                                                                                                         | ECTION – D                                                                                                                            | . (3)             |
| Attempt any FIVE of the following questions:                                                                                                                                                            |                                                                                                                                       | [20]              |
| Q.27. Solve the following system of equations by the $x + y + z = 6$ , $y + 3z = 11$ , $x + z = 2y$                                                                                                     | e method of reduction:                                                                                                                | (4)               |
| <b>Q.28.</b> Prove that the acute angle $\theta$ between the lines<br>$\tan \theta = \left  \frac{2\sqrt{h^2 - ab}}{a + b} \right $ .                                                                   | is represented by the equation $ax^2 + 2hxy + by^2 =$                                                                                 | 0 is              |
| Hence find the condition that the lines are coin                                                                                                                                                        | ncident.                                                                                                                              | (4)               |
| <b>Q.29.</b> Find the volume of the parallelopiped whose $D(-2, 5, 4)$ .                                                                                                                                | vertices are A(3, 2, -1), B(-2, 2, -3), C(3, 5, -2)                                                                                   | and (4)           |
| <b>Q.30.</b> Solve the following L.P.P. by graphical method<br>Maximize: $z = 10x + 25y$<br>Subject to : $0 \le x \le 3$ ,<br>$0 \le y \le 3$ ,<br>$x + y \le 5$ .<br>Also find the maximum value of z. | od:                                                                                                                                   | (4)               |
| <b>Q.31.</b> If $x = f(t)$ and $y = g(t)$ are differentiable functors<br>prove that $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ .                                                             | etions of t, so that y is function of x and $\frac{dx}{dt} \neq 0$ t                                                                  | .hen              |

dt Hence find  $\frac{dy}{dx}$ , if  $x = at^2$ , y = 2at.

(4)

#### **Mathematics and Statistics**

Q.32. A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest? (4)

**Q.33.** Evaluate: 
$$\int \frac{5e^x}{(e^x + 1)(e^{2x} + 9)} dx$$
 (4)

(4)

**Q.34.** Prove that: 
$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$
  
Hence show that:  $\int_{0}^{\pi} \sin x \, dx = 2 \int_{0}^{\frac{\pi}{2}} \sin x \, dx$