0266 C

Total No. of Questions: 24 Total No. of Printed Pages: 3

MATHEMATICS

Paper - II (A)

(English Version)

Time : 3 Hours

Max. Marks: 75

Instructions to candidate: This Question paper consists of three sections - A. B and C.

SECTION - A

(10 × 2 = 20)

- I. Very short answer type questions:
 - (i) Answer all questions.
 - (ii) Each question carries two marks.
 - 1. Find the square root of (-5 + 12i).
 - 2. If $z_1 = -1$, $z_2 = -i$ then find Arg (z_1, z_2) .
 - 3. Simplify $\left(\frac{(\cos\alpha + i\sin\alpha)^4}{(\sin\beta + i\cos\beta)^8}\right)$.
 - 4. If $x^2 6x + 5 = 0$ and $x^2 3ax + 35 = 0$ have a common root, then find a.
 - 5. If 1, 1, α are the roots of $x^3 6x^2 + 9x 4 = 0$ then find α .
 - 6. If ${}^{12}P_5 + 5$. ${}^{12}P_4 = {}^{13}P_r$, find r.
 - 7. If ${}^{n}C_{5} = {}^{n}C_{6}$ then find ${}^{13}C_{n}$.
 - 8. Write down and simplify the 7th term in (3x 4y)10.
 - 9. Find the mean deviation from the mean of the following discrete data.

 ' 6, 7, 10, 12, 13, 4, 12, 16.
 - 10. If the mean and variance of the binomial variable x are 2.4 and 1.44 respectively, find p $(1 < x \le 4)$.

- II. Short answer type questions.
 - (i) Attempt any five questions.
 - (ii) Each question carries four marks.
 - 11. Show that $\frac{2-i}{(1-2i)^2}$ and $\frac{-2-1}{25}$ are conjugate to each other.
 - 12. Determine the range of the following expression $\frac{x^2+x+1}{x^2-x+1}$, $x \in \mathbb{R}$.
 - 13. Find the sum of all 4-digit numbers that can be formed using the digits
 - 14. Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there will be at least 5 bowlers in the
 - 15. Resolve the following fraction into partial fractions: $\frac{5x+6}{(2+x)(1-x)}$
 - 16. If A and B are two events with $P(A \cup B) = 0.65$ and $P(A \cap B) = 0.15$ then find the value of P(Ac) + P(Bc).
 - 17.A problem in calculus is given to two students A and B whose chances of solving it are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability of the problem being solved if both of them try independently.

- III. Long Answer type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries seven marks.
- 18. Show that one value of $\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}$ is -1.

- 19. Solve the following equation $x^4 10x^3 + 26x^2 10x + 1 = 0$.
- 20. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of $(x + a)^n$ then prove that

(i)
$$P^2 - Q^2 = (x^2 - a^2)^n$$

(ii)
$$4 PQ = (x + a)^{2n} - (x - a)^{2n}$$

- 21. If $x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots \alpha$ then prove that $9x^2 + 24x = 11$.
- 22. Find the mean deviation from the mean for a continuous frequency distribution.

40-50	50-60	60-70	70-80	80-90	90-100
5	15	25		20	50-100
	40-50	40-50 50-60 5 15	40-50 50-60 60-70 5 15 25	40-50 50-60 60-70 70-80 5 15 25 30	40-50 50-60 60-70 70-80 80-90 5 15 25 30 20

- 23. State and prove "Addition theorem on probability".
- 24. The range of a random variable X is { 0, 1, 2 }. Given that P $(x = 0) = 3c^3$, P $(x = 1) = 4c 10c^2$, P (x = 2) = 5c 1
 - (i) Find the value of c and
 - (ii) P(x < 1), $P(1 < x \le 2)$, $P(0 < x \le 3)$.