CAT Quantitative Aptitude Practice Questions

Question 1:

For an odd number n, find the highest number that always divides $n \times(n 2-1)$?
[1] 12
[2] 24
[3] 48
[4] 96

Question 2:

For every positive integer n, the highest number that $n \times(n 2-1) \times(5 n+2)$ is always divisible by is
[1] 6
[2] 24
[3] 36
[4] 48

Question 3:

1 and 8 are the first two positive integers for which $1+2+3+\ldots+n$ is a perfect square. Which number is the 4th such number?

Question 4:

If x and y are positive integers and $\mathrm{x} 2-\mathrm{y} 2=101$, find the value of $\mathrm{x} 2+\mathrm{y} 2$.
[1] 5050
[2] 5150
[3] 5101
[4] None of these

Question 5:

The numbers 2604, 1020 and 4812 when divided by a number N give the same remainder of 12. Find the highest such number N .

Question 6:

A number when divided by $3,4,5$, and 6 always leaves a remainder of 2 , but leaves no remainder when divided by 7 . What is the lowest such number possible?

Question 7:

How many natural numbers ' n ' are there, such that ' n !' ends with exactly 30 zeroes?
[1] 0
[2] 1
[3] 3
[4] 4

Question 8:

n ! has x number of zeros at the end and $(n+1)$! has $(x+3)$ zeroes at the end. $1 \leq n \leq 1000$. How many solutions are possible for ' n '?
[1] 8
[2] 7
[3] 1
[4] 4

Question 9:

The sum of all the possible numbers of 4 digits formed by digits $3,5,5$, and 6 using each digit once is
[1] 64427
[2] 63327
[3] 65297
[4] 43521

Question 10:

In how many ways 2 different numbers can be chosen using the numbers between 0 and 180 (both inclusive) so that 60 is their average?
[1] 50
[2] 60
[3] 80
[4] None of these

Question 11:

A Dubai based gangster Chhota Vakil is in Switzerland these days. He wants to rob a bank there, whose locker code according to his information is an odd number between 50 and 450. He also knows that the numbers are from the set : $0,1,2,3,4,5\}$. How many maximum trials does he have to take to unlock the locker?
[1] 54
[2] 72
[3] 78
[4] 106

Question 12:

A work was completed by three persons of equal ability, first one doing m hours for m days, second one doing n hours for n days (m and n being integers) and third one doing 16 hours for 16 days. The work could have been completed in 29 days by a third person alone with his respective working hours. If all of them do the work together with their respective working hours, then they can complete it in about
[1] 12 days
[2] 13 days
[3] 14 days
[4] 15 days

Question 13:

A and B do a work in exactly 16 days, B and C do the same work in exactly 12 days while C and A do the same work in about 10 days. If A, B and C can together do the work in integral number of days, then C does the work alone in
[1] 15 days
[2] 16 days
[3] 18 days
[4] None of these

Question 14:

I sell 16 sheep at a gain of 12.5% and 20 more at a certain gain percent. If 1 gain 25% on the whole, how much percent gain did I make on the latter number?

1. 20%
2. 25%
3. 30%
4. 35%

Question 15:

A bike costs Rs. 48000 . Its value depreciates by 30% in the first year and in each subsequent year the depreciation is 20% of the value at the beginning of that year. The value of the bike after 3 years will be

1. Rs. 21504
2. Rs. 26880
3. Rs. 38400
4. Rs. 39480
