BOARD QUESTION PAPER: JULY 2022
 Mathematics Part - II

Time: 2 Hours
Max. Marks: 40
Note:
i. All questions are compulsory.
ii. Use of calculator is not allowed.
iii. The numbers to the right of the questions indicate full marks.
iv. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
v. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
vi. Draw proper figures for answers wherever necessary.
vii. The marks of construction should be clear. Do not erase them.
viii. Diagram is essential for writing the proof of the theorem.
Q.1. (A) Four alternative answers are given for every sub-question. Select the correct alternative and write the alphabet of that answer:
i. From the following points \qquad point lies to the right side of the origin on X -axis.
(A) $(-2,0)$
(B) $(0,2)$
(C) $(2,3)$
(D) $(2,0)$
ii. $\quad \Delta \mathrm{PQR} \sim \Delta \mathrm{STU}$ and $\mathrm{A}(\Delta \mathrm{PQR}): \mathrm{A}(\Delta \mathrm{STU})=64: 81$, then what is the ratio of corresponding sides?
(A) $8: 9$
(B) $64: 81$
(C) $9: 8$
(D) $16: 27$
iii. In a right angled triangle; if the sum of the squares of sides making right angle is 169 , then what is the length of hypotenuse?
(A) 15
(B) 13
(C) 5
(D) 12
iv. If $\tan \theta=\sqrt{3}$, then the value of θ is \qquad
(A) 60°
(B) 30°
(C) 90°
(D) 45°
(B) Solve the following sub-questions:
i. In the given figure, seg $\mathrm{CB} \perp \operatorname{seg} \mathrm{AB}$, seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{AB}$. If $\mathrm{BC}=4, \mathrm{AD}=8$, then find $\frac{A(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}$

ii. Find the coordinates of the midpoint of the segment joining the points $(22,20)$ and $(0,16)$.
iii. Two circles having radii 7 cm and 4 cm touch other internally. Find the distance between their centres.
iv. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}=30^{\circ}$, $\mathrm{AC}=14$, then find BC .

Q.2. (A) Complete the following activities and rewrite it (any two):
i. In the above figure, $\angle \mathrm{PQR}$ is inscribed in the semicircle PQR . Complete the following activity to find measure of $\angle \mathrm{PQR}$.
Activity:
$\mathrm{m}(\operatorname{arc} \mathrm{PQR})=180^{\circ}$
...(measure of semicircle)
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{PXR})=$ \square
$\therefore \quad \angle \mathrm{PQR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \square)$

$\therefore \quad \angle \mathrm{PQR}=\square$
ii. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{C}=\theta^{\circ}$ then complete the activity to derive the trigonometric identity.

Activity:

$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\square$
...(Pythagoras theorem)
$\therefore \quad \frac{\mathrm{AB}^{2}}{\mathrm{AB}^{2}}+\frac{\mathrm{BC}^{2}}{\mathrm{AB}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{AB}^{2}}$
$\ldots\left(\right.$ dividing by $\left.\mathrm{AB}^{2}\right)$

$\therefore \quad 1+\frac{\mathrm{BC}^{2}}{\mathrm{AB}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{AB}^{2}}$
But $\frac{\square}{\mathrm{AB}^{2}}=\cot ^{2} \theta$ and $\frac{\mathrm{AC}^{2}}{\square}=\operatorname{cosec}^{2} \theta$
$\therefore \quad 1+\square=\operatorname{cosec}^{2} \theta$
iii. In $\triangle \mathrm{PQR}$, if $\mathrm{PN}=12, \mathrm{NR}=8, \mathrm{PM}=15, \mathrm{MQ}=12$, then complete the following activity to justify whether seg NM is parallel to side RQ or not.
Activity:
In $\triangle P Q R$,
$\frac{\mathrm{PN}}{\mathrm{NR}}=\frac{12}{\square}=\frac{3}{2}$
and $\frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{15}{12}=\frac{\square}{4}$
$\therefore \quad \frac{\mathrm{PN}}{\mathrm{NR}} \neq \frac{\mathrm{PM}}{\mathrm{MQ}}$
\ldots..[from (i) and (ii)]
$\therefore \quad \mathrm{By}$ \qquad
seg NM is \square to side RQ .
[Note : The activity has been modified.]
(B) Solve the following sub-questions (Any four):
i. In the given figure,
chord AC and chord DE intersect each other at point B .
If $\angle \mathrm{ABE}=108^{\circ}$ and $\mathrm{m}(\operatorname{arc} \mathrm{AE})=95^{\circ}$,
Then fine $m(\operatorname{arc} D C)$.

ii. Find the distance between the points $\mathrm{P}(-1,1)$ and $\mathrm{Q}(5,-7)$.
iii. Construct a tangent to a circle with centre P and radius 3.5 cm at any point M on it.
iv. Find the length of diagonal of rectangle having sides 11 cm and 60 cm .
v. If $\sin \theta=\frac{7}{25}$, then find values of $\cos \theta$ and $\tan \theta$.
Q.3. (A) Complete the following activities and rewrite it (any one):
i. In the above figure
$\angle \mathrm{QPR}=90^{\circ}, \operatorname{seg} \mathrm{PM} \perp \operatorname{seg} \mathrm{QR}$ and $\mathrm{Q}-\mathrm{M}-\mathrm{R} . \mathrm{PM}=10$, $\mathrm{QM}=8$. Complete the following activity to find the value of QR .
Activity:
In $\triangle \mathrm{PQR}, \angle \mathrm{QPR}=90^{\circ}$ and
$\operatorname{seg} \mathrm{PM} \perp \operatorname{seg} \mathrm{QR}$
....(Given)
$\therefore \quad \mathrm{PM}^{2}=\square \times \mathrm{MR}$

$\therefore \quad(\square)^{2}=8 \times \mathrm{MR}$
$\therefore \quad \frac{100}{8}=\mathrm{MR}$
$\therefore \quad \square=\mathrm{MR}$
Now $\mathrm{QR}=\mathrm{QM}+\mathrm{MR}$
$\therefore \quad \mathrm{QR}=8+\square$
$\therefore \quad \mathrm{QR}=\square$
ii. In the above figure, in $\triangle \mathrm{ABC}$ seg $\mathrm{XY} \|$ side $\mathrm{AC}, \mathrm{A}-\mathrm{X}-\mathrm{B}, \mathrm{B}-\mathrm{Y}-\mathrm{C}$ If $2 \mathrm{AX}=3 \mathrm{BX}$ and $\mathrm{XY}=9$,
then complete the following activity to find value of $A C$.
Activity:
$2 \mathrm{AX}=3 \mathrm{BX}$
...(Given)
$\therefore \quad \frac{\mathrm{AX}}{\mathrm{BX}}=\frac{\square}{\square}$
$\therefore \quad \frac{\mathrm{AX}+\mathrm{BX}}{\mathrm{BX}}=\frac{3+2}{\mathrm{~A}(\Delta \mathrm{PQR})}$
...(Componendo)
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BX}}=\frac{5}{2}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{BYX}$
$\ldots(\square$ test of similarity)
$\therefore \quad \frac{\mathrm{BA}}{\mathrm{BX}}=\frac{\mathrm{AC}}{\square}$
$\therefore \quad \frac{\mathrm{BA}}{\mathrm{BX}}=\frac{\mathrm{AC}}{\square}$
\ldots..[from (i)]
$\therefore \quad \mathrm{AC}=$ \square
(B) Solve the following sub-questions (any two):
i. Prove that $\sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}$.
ii. Find the coordinates of centroid of the triangle whose vertices are $(4,7),(8,4),(7,11)$.
iii. Prove that "Opposite angles of a cyclic quadrilateral are supplementary".
iv. Draw a circle with centre O and radius 3.5 cm . take a point P at a distance 7.5 cm from the centre. Draw tangents to the circle from point P.
Q.4. Solve the following sub-questions (any two):
i. In $\triangle A B C$, point X is any point on side $B C$. seg $X M \| \operatorname{seg} A B$ and seg $X N \| \operatorname{seg} A C$.
Extend seg MN such that it intersects extended side CB in point T .
Then prove that $\mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$.

Mathematics Part - II

ii. Draw triangle ABC , right angle at B such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$. Now construct $\triangle \mathrm{PBQ}$ similar to $\triangle \mathrm{ABC}$ each of whose sides are $\frac{7}{4}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
iii. In the given figure, points $\mathrm{A}, \mathrm{P}, \mathrm{B}, \mathrm{R}, \mathrm{C}, \mathrm{Q}$ are on the circle. After joining the given points as shown in the figure it from hexagon, then prove that $\angle \mathrm{APB}+\angle \mathrm{BRC}=360^{\circ}-\angle \mathrm{AQC}$.

Q.5. Solve the following sub-questions (Any one):
i. $\quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are equilateral triangles with altitudes $2 \sqrt{3}$ and $4 \sqrt{3}$ respectively, then:
a. Find the length of side AB and side PQ
b. Find $\frac{A(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}$
c. Find the radio of perimeter of $\triangle \mathrm{ABC}$ to the perimeter of $\triangle \mathrm{PQR}$.
ii. In a circle with centre O, PA and PB are tangents from an external point P . E is the point on the circle such that O-E-P. Tangent drawn at E intersects PA and PB in point C and D respectively. If $\mathrm{PA}=10$, then write the answers to the following questions:
a. Draw the suitable figure using given information.
b. Write the relation between seg PA and seg PB
c. Find the perimeter of $\triangle P C D$.

