BOARD QUESTION PAPER: JULY 2023
 Mathematics Part - II

Time: 2 Hours
Max. Marks: 40
Note:
i. All questions are compulsory.
ii. Use of calculator is not allowed.
iii. The numbers to the right of the questions indicate full marks.
iv. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
v. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
vi. Draw proper figures for answers wherever necessary.
vii. The marks of construction should be clear. Do not erase them.
viii. Diagram is essential for writing the proof of the theorem.
Q.1. (A) For each of the following sub-question four alternative answers are given. Choose the correct alternative and write its alphabet:

1. The volume of a cube of side 10 cm is \qquad
(A) $1 \mathrm{~cm}^{3}$
(B) $10 \mathrm{~cm}^{3}$
(C) $100 \mathrm{~cm}^{3}$
(D) $1000 \mathrm{~cm}^{3}$
2. A line makes an angle of 30° with positive direction of X -axis, then the slope of the line is
\qquad -.
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\sqrt{3}$
3. $\angle \mathrm{ACB}$ is inscribed in arc ACB of a circle with centre O . If $\angle \mathrm{ACB}=65^{\circ}$, find $\mathrm{m}(\operatorname{arc} \mathrm{ACB})$:
(A) 65°
(B) 130°
(C) 295°
(D) 230°
4. Find the perimeter of a square if its diagonal is $10 \sqrt{2} \mathrm{~cm}$.
(A) 10 cm
(B) $40 \sqrt{2} \mathrm{~cm}$
(C) 20 cm
(D) 40 cm
(B) Solve the following sub-questions:
5. In the following figure, $\angle \mathrm{ABC}=\angle \mathrm{DCB}=90^{\circ}, \mathrm{AB}=6, \mathrm{DC}=8$, then $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=$?

6. In the following figure, find the length of $R P$ using the information given in $\triangle \mathrm{PSR}$.

7. What is the distance between two parallel tangents of a circle having radius 4.5 cm ?
8. Find the co-ordinates of midpoint of the segment joining the points $\mathrm{A}(4,6)$ and $\mathrm{B}(-2,2)$.

Q.2. (A) Complete the following activities and rewrite it (any two):

In the above figure, circle with centre D touches the sides of $\angle \mathrm{ACB}$ at A and B . If $\angle \mathrm{ACB}=52^{\circ}$, complete the activity to find the measure of $\angle \mathrm{ADB}$.

Activity:

In \square ABCD,
$\angle \mathrm{CAD}=\angle \mathrm{CBD}=$ \square Tangent theorem
$\therefore \quad \angle \mathrm{ACB}+\angle \mathrm{CAD}+\angle \mathrm{CBD}+\angle \mathrm{ADB}=\square^{\circ}$
$\therefore \quad 52^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{ADB}=360^{\circ}$
$\therefore \quad \angle \mathrm{ADB}+\square^{\circ}=360^{\circ}$
$\angle \mathrm{ADB}=360^{\circ}-232^{\circ}$
$\therefore \quad \angle \mathrm{ADB}=$ \qquad
2.

In the above figure, side of square ABCD is 7 cm with centre D and radius DA sector $\mathrm{D}-\mathrm{AXC}$ is drawn.
Complete the following activity to find the area of square ABCD and sector D-AXC.
Activity:
Area of square $=$ \square
\qquad formula

$$
=(7)^{2}
$$

$$
=49 \mathrm{~cm}^{2}
$$

Area of sector $(\mathrm{D}-\mathrm{AXC})=\square$..... formula

$$
\begin{aligned}
& =\frac{\square}{360} \times \frac{22}{7} \times \square \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Complete the following activity to prove $\cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$.

Activity:

L.H.S. $=\cot \theta+\tan \theta$
$=\frac{\square}{\sin \theta}+\frac{\sin \theta}{\cos \theta}$
$=\frac{\square+\square}{\sin \theta \cdot \cos \theta}$

$$
\begin{aligned}
& =\frac{1}{\sin \theta \cdot \cos \theta} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& =\frac{1}{\sin \theta} \times \frac{1}{\cos \theta} \\
& =\square \times \sec \theta
\end{aligned}
$$

$\therefore \quad$ L.H.S. $=$ R.H.S.
$\therefore \quad \cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$
(B) Solve the following sub-questions (Any four):

1. If $\cos \theta=\frac{3}{5}$, then find $\sin \theta$.
2. Find slope of line $E F$, where co-ordinates of E are $(-4,-2)$ and co-ordinates of F are $(6,3)$.
3.

In the above figure, ray $P Q$ touches the circle at point Q.
If $\mathrm{PQ}=12, \mathrm{PR}=8$, find the length of $\operatorname{seg} \mathrm{PS}$.
4.

In the above figure, $\angle \mathrm{MNP}=90^{\circ}$, seg $\mathrm{NQ} \perp \operatorname{seg} \mathrm{MP} . \mathrm{MQ}=9, \mathrm{QP}=4$. Find NQ.
5.

In the above figure, if $\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}$, then find x and AE by using the information given in the figure.
Q.3. (A) Complete the following activities and rewrite it (any one):

In the above figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle seg $\mathrm{PQ} \| \operatorname{seg} \mathrm{DE}$, seg $\mathrm{QR} \|$ seg EF . Complete the following activity to prove seg PR \| seg DF.

Activity :

In $\triangle \mathrm{XDE}, \mathrm{PQ} \| \mathrm{DE}$
$\therefore \quad \frac{\mathrm{XP}}{\square}=\frac{\square}{\mathrm{QE}}$
In $\triangle \mathrm{XEF}, \mathrm{QR} \| \mathrm{EF}$
$\therefore \quad \frac{\mathrm{XQ}}{\mathrm{QE}}=\frac{\square}{\mathrm{RF}}$
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\square}{\square}$
$\therefore \quad$ seg PR $\|$ seg DF
2.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any points on the circle with centre O .
If $m(\operatorname{arc} \mathrm{BC})=110^{\circ}$ and $m(\operatorname{arc} \mathrm{AB})=125^{\circ}$, complete the following activity to find $m(\operatorname{arc} \mathrm{ABC}), m(\operatorname{arc} \mathrm{AC}), m(\operatorname{arc} \mathrm{ACB})$ and $m(\operatorname{arc} \mathrm{BAC})$.

Activity :

$m(\operatorname{arc} \mathrm{ABC})=m(\operatorname{arc} \mathrm{AB})+\square$

$$
\begin{aligned}
& =\square^{\circ}+110^{\circ} \\
& =235^{\circ}
\end{aligned}
$$

$m(\operatorname{arc} \mathrm{AC})=360^{\circ}-m(\operatorname{arc}$ \square

$$
\begin{aligned}
& =360^{\circ}-\square^{\circ} \\
& =125^{\circ}
\end{aligned}
$$

Similarly

$$
\begin{gathered}
m(\operatorname{arc} \mathrm{ACB})=360^{\circ}-\square \\
=235^{\circ} \\
\text { and } m(\operatorname{arc~BAC})=360^{\circ}-\square \\
=250^{\circ}
\end{gathered}
$$

(B) Solve the following sub-questions (any $\boldsymbol{t w o}$):

1. The radius of a circle is 6 cm , the area of a sector of this circle is 15π sq.cm. Find the measure of the arc and the length of the arc corresponding to that sector.
2. If $A(3,5)$ and $B(7,9)$, point Q divides seg $A B$ in the ratio $2: 3$, find the co-ordinates of point Q.
3. Prove that:
"In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides."
4. $\quad \triangle \mathrm{PQR} \sim \Delta \mathrm{LTR}$. In $\triangle \mathrm{PQR}, \mathrm{PQ}=4.2 \mathrm{~cm}, \mathrm{QR}=5.4 \mathrm{~cm}, \mathrm{PR}=4.8 \mathrm{~cm}$. Construct $\triangle \mathrm{PQR}$ and $\Delta \mathrm{LTR}$ such that $\frac{\mathrm{PQ}}{\mathrm{LT}}=\frac{3}{4}$.

Q.4. Solve the following sub-questions (any two):

1. A bucket is in the form of a frustum of a cone. It holds 28.490 litres of water. The radii of the top and the bottom are 28 cm and 21 cm respectively. Find the height of the bucket. $\left(\pi=\frac{22}{7}\right)$
2. Draw a circle with centre P and radius 3 cm . Draw a chord $M N$ of length 4 cm . Draw tangents to the circle through points M and N which intersect in point Q . Measure the length of seg PQ.
3. In $\triangle \mathrm{PQR}$, bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ intersect in point X . Line PX intersects side QR in point Y , then prove that: $\frac{\mathrm{PQ}+\mathrm{PR}}{\mathrm{QR}}=\frac{\mathrm{PX}}{\mathrm{XY}}$.
Q.5. Solve the following sub-questions (Any one):
4. From top of the building, Ramesh is looking at a bicycle parked at some distance away from the building on the road.
If
$\mathrm{AB} \rightarrow$ Height of building is 40 m
$\mathrm{C} \rightarrow$ Position of bicycle
A \rightarrow Position of Ramesh on top of the building
$\angle \mathrm{MAC}$ is the angle of depression and $m \angle \mathrm{MAC}=30^{\circ}$, then:
(a) Draw a figure with the given information.
(b) Find the distance between building and the bicycle. $(\sqrt{3}=1.73)$.
5. $\square \mathrm{ABCD}$ is a cyclic quadrilateral where side $\mathrm{AB} \cong$ side $\mathrm{BC}, \angle \mathrm{ADC}=110^{\circ}$, AC is the diagonal, then:
(a) Draw the figure using given information
(b) Find measure of $\angle \mathrm{ABC}$
(c) Find measure of $\angle \mathrm{BAC}$
(d) Find measure of (arc ABC).
